spi-dw-core.c 25.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
G
Grant Likely 已提交
3
 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 5 6 7 8 9
 *
 * Copyright (c) 2009, Intel Corporation.
 */

#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
10
#include <linux/module.h>
11
#include <linux/preempt.h>
12 13
#include <linux/highmem.h>
#include <linux/delay.h>
14
#include <linux/slab.h>
15
#include <linux/spi/spi.h>
16 17
#include <linux/spi/spi-mem.h>
#include <linux/string.h>
18
#include <linux/of.h>
19

G
Grant Likely 已提交
20
#include "spi-dw.h"
21

22 23 24 25
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif

26
/* Slave spi_device related */
27
struct chip_data {
28
	u32 cr0;
29
	u32 rx_sample_dly;	/* RX sample delay */
30 31 32
};

#ifdef CONFIG_DEBUG_FS
33 34 35 36 37

#define DW_SPI_DBGFS_REG(_name, _off)	\
{					\
	.name = _name,			\
	.offset = _off,			\
38 39
}

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
56
	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
57 58
};

59
static int dw_spi_debugfs_init(struct dw_spi *dws)
60
{
61
	char name[32];
62

63
	snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
64
	dws->debugfs = debugfs_create_dir(name, NULL);
65 66 67
	if (!dws->debugfs)
		return -ENOMEM;

68 69 70 71 72
	dws->regset.regs = dw_spi_dbgfs_regs;
	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
	dws->regset.base = dws->regs;
	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);

73 74 75
	return 0;
}

76
static void dw_spi_debugfs_remove(struct dw_spi *dws)
77
{
J
Jingoo Han 已提交
78
	debugfs_remove_recursive(dws->debugfs);
79 80 81
}

#else
82
static inline int dw_spi_debugfs_init(struct dw_spi *dws)
83
{
84
	return 0;
85 86
}

87
static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
88 89 90 91
{
}
#endif /* CONFIG_DEBUG_FS */

92
void dw_spi_set_cs(struct spi_device *spi, bool enable)
93
{
94
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
S
Serge Semin 已提交
95
	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
96

S
Serge Semin 已提交
97 98 99 100 101 102 103 104
	/*
	 * DW SPI controller demands any native CS being set in order to
	 * proceed with data transfer. So in order to activate the SPI
	 * communications we must set a corresponding bit in the Slave
	 * Enable register no matter whether the SPI core is configured to
	 * support active-high or active-low CS level.
	 */
	if (cs_high == enable)
105
		dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106
	else
107
		dw_writel(dws, DW_SPI_SER, 0);
108
}
109
EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110

111 112 113
/* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi *dws)
{
S
Serge Semin 已提交
114
	u32 tx_room, rxtx_gap;
115

116
	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117 118 119 120 121 122 123 124 125

	/*
	 * Another concern is about the tx/rx mismatch, we
	 * though to use (dws->fifo_len - rxflr - txflr) as
	 * one maximum value for tx, but it doesn't cover the
	 * data which is out of tx/rx fifo and inside the
	 * shift registers. So a control from sw point of
	 * view is taken.
	 */
S
Serge Semin 已提交
126
	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127

S
Serge Semin 已提交
128
	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129 130 131 132 133
}

/* Return the max entries we should read out of rx fifo */
static inline u32 rx_max(struct dw_spi *dws)
{
S
Serge Semin 已提交
134
	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135 136
}

137
static void dw_writer(struct dw_spi *dws)
138
{
139
	u32 max = tx_max(dws);
140
	u16 txw = 0;
141

142
	while (max--) {
S
Serge Semin 已提交
143
		if (dws->tx) {
144 145 146 147
			if (dws->n_bytes == 1)
				txw = *(u8 *)(dws->tx);
			else
				txw = *(u16 *)(dws->tx);
S
Serge Semin 已提交
148 149

			dws->tx += dws->n_bytes;
150
		}
151
		dw_write_io_reg(dws, DW_SPI_DR, txw);
S
Serge Semin 已提交
152
		--dws->tx_len;
153 154 155
	}
}

156
static void dw_reader(struct dw_spi *dws)
157
{
158
	u32 max = rx_max(dws);
159
	u16 rxw;
160

161
	while (max--) {
162
		rxw = dw_read_io_reg(dws, DW_SPI_DR);
S
Serge Semin 已提交
163
		if (dws->rx) {
164 165 166 167
			if (dws->n_bytes == 1)
				*(u8 *)(dws->rx) = rxw;
			else
				*(u16 *)(dws->rx) = rxw;
S
Serge Semin 已提交
168 169

			dws->rx += dws->n_bytes;
170
		}
S
Serge Semin 已提交
171
		--dws->rx_len;
172 173 174
	}
}

175
int dw_spi_check_status(struct dw_spi *dws, bool raw)
176
{
177 178
	u32 irq_status;
	int ret = 0;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	if (raw)
		irq_status = dw_readl(dws, DW_SPI_RISR);
	else
		irq_status = dw_readl(dws, DW_SPI_ISR);

	if (irq_status & SPI_INT_RXOI) {
		dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
		ret = -EIO;
	}

	if (irq_status & SPI_INT_RXUI) {
		dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
		ret = -EIO;
	}

	if (irq_status & SPI_INT_TXOI) {
		dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
		ret = -EIO;
	}

	/* Generically handle the erroneous situation */
	if (ret) {
		spi_reset_chip(dws);
		if (dws->master->cur_msg)
			dws->master->cur_msg->status = ret;
	}

	return ret;
208
}
209
EXPORT_SYMBOL_GPL(dw_spi_check_status);
210

211
static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212
{
213
	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214

215 216
	if (dw_spi_check_status(dws, false)) {
		spi_finalize_current_transfer(dws->master);
217 218 219
		return IRQ_HANDLED;
	}

220 221 222 223 224 225 226
	/*
	 * Read data from the Rx FIFO every time we've got a chance executing
	 * this method. If there is nothing left to receive, terminate the
	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
	 * final stage of the transfer. By doing so we'll get the next IRQ
	 * right when the leftover incoming data is received.
	 */
227
	dw_reader(dws);
S
Serge Semin 已提交
228
	if (!dws->rx_len) {
229
		spi_mask_intr(dws, 0xff);
230
		spi_finalize_current_transfer(dws->master);
231 232
	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233
	}
234 235 236 237 238 239

	/*
	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
	 * disabled after the data transmission is finished so not to
	 * have the TXE IRQ flood at the final stage of the transfer.
	 */
240
	if (irq_status & SPI_INT_TXEI) {
241
		dw_writer(dws);
242 243
		if (!dws->tx_len)
			spi_mask_intr(dws, SPI_INT_TXEI);
244 245 246 247 248 249 250
	}

	return IRQ_HANDLED;
}

static irqreturn_t dw_spi_irq(int irq, void *dev_id)
{
251 252
	struct spi_controller *master = dev_id;
	struct dw_spi *dws = spi_controller_get_devdata(master);
253
	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
Y
Yong Wang 已提交
254 255 256

	if (!irq_status)
		return IRQ_NONE;
257

258
	if (!master->cur_msg) {
259
		spi_mask_intr(dws, 0xff);
260 261 262 263 264 265
		return IRQ_HANDLED;
	}

	return dws->transfer_handler(dws);
}

266
static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267
{
268
	u32 cr0 = 0;
269

S
Serge Semin 已提交
270 271 272
	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
		/* CTRLR0[ 5: 4] Frame Format */
		cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
273

S
Serge Semin 已提交
274 275 276 277 278 279 280
		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 6] Serial Clock Phase
		 * CTRLR0[ 7] Serial Clock Polarity
		 */
		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
281

S
Serge Semin 已提交
282 283 284 285 286
		/* CTRLR0[11] Shift Register Loop */
		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
	} else {
		/* CTRLR0[ 7: 6] Frame Format */
		cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
287

S
Serge Semin 已提交
288 289 290 291 292 293 294
		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 8] Serial Clock Phase
		 * CTRLR0[ 9] Serial Clock Polarity
		 */
		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
295

S
Serge Semin 已提交
296 297
		/* CTRLR0[13] Shift Register Loop */
		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
298

S
Serge Semin 已提交
299 300 301
		if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
			cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
	}
302

303 304 305
	return cr0;
}

306 307
void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
			  struct dw_spi_cfg *cfg)
308 309 310
{
	struct chip_data *chip = spi_get_ctldata(spi);
	u32 cr0 = chip->cr0;
311 312
	u32 speed_hz;
	u16 clk_div;
313 314

	/* CTRLR0[ 4/3: 0] Data Frame Size */
315
	cr0 |= (cfg->dfs - 1);
316 317 318

	if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
		/* CTRLR0[ 9:8] Transfer Mode */
319
		cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
320 321
	else
		/* CTRLR0[11:10] Transfer Mode */
322
		cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
323

S
Serge Semin 已提交
324
	dw_writel(dws, DW_SPI_CTRLR0, cr0);
325

326 327 328
	if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);

329
	/* Note DW APB SSI clock divider doesn't support odd numbers */
330
	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
331 332 333 334 335
	speed_hz = dws->max_freq / clk_div;

	if (dws->current_freq != speed_hz) {
		spi_set_clk(dws, clk_div);
		dws->current_freq = speed_hz;
336
	}
337 338 339 340 341 342

	/* Update RX sample delay if required */
	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
		dws->cur_rx_sample_dly = chip->rx_sample_dly;
	}
343
}
344
EXPORT_SYMBOL_GPL(dw_spi_update_config);
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359
static void dw_spi_irq_setup(struct dw_spi *dws)
{
	u16 level;
	u8 imask;

	/*
	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
	 * will be adjusted at the final stage of the IRQ-based SPI transfer
	 * execution so not to lose the leftover of the incoming data.
	 */
	level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
	dw_writel(dws, DW_SPI_TXFTLR, level);
	dw_writel(dws, DW_SPI_RXFTLR, level - 1);

360 361
	dws->transfer_handler = dw_spi_transfer_handler;

362 363 364 365 366
	imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
		SPI_INT_RXFI;
	spi_umask_intr(dws, imask);
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * The iterative procedure of the poll-based transfer is simple: write as much
 * as possible to the Tx FIFO, wait until the pending to receive data is ready
 * to be read, read it from the Rx FIFO and check whether the performed
 * procedure has been successful.
 *
 * Note this method the same way as the IRQ-based transfer won't work well for
 * the SPI devices connected to the controller with native CS due to the
 * automatic CS assertion/de-assertion.
 */
static int dw_spi_poll_transfer(struct dw_spi *dws,
				struct spi_transfer *transfer)
{
	struct spi_delay delay;
	u16 nbits;
	int ret;

	delay.unit = SPI_DELAY_UNIT_SCK;
	nbits = dws->n_bytes * BITS_PER_BYTE;

	do {
		dw_writer(dws);

		delay.value = nbits * (dws->rx_len - dws->tx_len);
		spi_delay_exec(&delay, transfer);

		dw_reader(dws);

		ret = dw_spi_check_status(dws, true);
		if (ret)
			return ret;
	} while (dws->rx_len);

	return 0;
}

403
static int dw_spi_transfer_one(struct spi_controller *master,
404
		struct spi_device *spi, struct spi_transfer *transfer)
405
{
406
	struct dw_spi *dws = spi_controller_get_devdata(master);
407 408 409 410 411
	struct dw_spi_cfg cfg = {
		.tmode = SPI_TMOD_TR,
		.dfs = transfer->bits_per_word,
		.freq = transfer->speed_hz,
	};
412
	int ret;
413

414
	dws->dma_mapped = 0;
415
	dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
416
	dws->tx = (void *)transfer->tx_buf;
S
Serge Semin 已提交
417
	dws->tx_len = transfer->len / dws->n_bytes;
418
	dws->rx = transfer->rx_buf;
S
Serge Semin 已提交
419
	dws->rx_len = dws->tx_len;
420

S
Serge Semin 已提交
421
	/* Ensure the data above is visible for all CPUs */
422 423
	smp_mb();

424 425
	spi_enable_chip(dws, 0);

426
	dw_spi_update_config(dws, spi, &cfg);
427

428
	transfer->effective_speed_hz = dws->current_freq;
429

430
	/* Check if current transfer is a DMA transaction */
431 432
	if (master->can_dma && master->can_dma(master, spi, transfer))
		dws->dma_mapped = master->cur_msg_mapped;
433

434 435 436
	/* For poll mode just disable all interrupts */
	spi_mask_intr(dws, 0xff);

437
	if (dws->dma_mapped) {
438
		ret = dws->dma_ops->dma_setup(dws, transfer);
439
		if (ret)
440
			return ret;
441 442
	}

443
	spi_enable_chip(dws, 1);
444

445 446
	if (dws->dma_mapped)
		return dws->dma_ops->dma_transfer(dws, transfer);
447 448
	else if (dws->irq == IRQ_NOTCONNECTED)
		return dw_spi_poll_transfer(dws, transfer);
449

450 451
	dw_spi_irq_setup(dws);

452
	return 1;
453 454
}

455
static void dw_spi_handle_err(struct spi_controller *master,
456
		struct spi_message *msg)
457
{
458
	struct dw_spi *dws = spi_controller_get_devdata(master);
459

460 461 462
	if (dws->dma_mapped)
		dws->dma_ops->dma_stop(dws);

463
	spi_reset_chip(dws);
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	if (op->data.dir == SPI_MEM_DATA_IN)
		op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);

	return 0;
}

static bool dw_spi_supports_mem_op(struct spi_mem *mem,
				   const struct spi_mem_op *op)
{
	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
		return false;

	return spi_mem_default_supports_op(mem, op);
}

static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
{
	unsigned int i, j, len;
	u8 *out;

	/*
	 * Calculate the total length of the EEPROM command transfer and
	 * either use the pre-allocated buffer or create a temporary one.
	 */
	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
	if (op->data.dir == SPI_MEM_DATA_OUT)
		len += op->data.nbytes;

	if (len <= SPI_BUF_SIZE) {
		out = dws->buf;
	} else {
		out = kzalloc(len, GFP_KERNEL);
		if (!out)
			return -ENOMEM;
	}

	/*
	 * Collect the operation code, address and dummy bytes into the single
	 * buffer. If it's a transfer with data to be sent, also copy it into the
	 * single buffer in order to speed the data transmission up.
	 */
	for (i = 0; i < op->cmd.nbytes; ++i)
		out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
	for (j = 0; j < op->addr.nbytes; ++i, ++j)
		out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
		out[i] = 0x0;

	if (op->data.dir == SPI_MEM_DATA_OUT)
		memcpy(&out[i], op->data.buf.out, op->data.nbytes);

	dws->n_bytes = 1;
	dws->tx = out;
	dws->tx_len = len;
	if (op->data.dir == SPI_MEM_DATA_IN) {
		dws->rx = op->data.buf.in;
		dws->rx_len = op->data.nbytes;
	} else {
		dws->rx = NULL;
		dws->rx_len = 0;
	}

	return 0;
}

static void dw_spi_free_mem_buf(struct dw_spi *dws)
{
	if (dws->tx != dws->buf)
		kfree(dws->tx);
}

static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
{
	u32 room, entries, sts;
	unsigned int len;
	u8 *buf;

	/*
	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
	 * since native CS hasn't been enabled yet and the automatic data
	 * transmission won't start til we do that.
	 */
	len = min(dws->fifo_len, dws->tx_len);
	buf = dws->tx;
	while (len--)
		dw_write_io_reg(dws, DW_SPI_DR, *buf++);

	/*
	 * After setting any bit in the SER register the transmission will
	 * start automatically. We have to keep up with that procedure
	 * otherwise the CS de-assertion will happen whereupon the memory
	 * operation will be pre-terminated.
	 */
	len = dws->tx_len - ((void *)buf - dws->tx);
	dw_spi_set_cs(spi, false);
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
		if (!entries) {
			dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
			return -EIO;
		}
		room = min(dws->fifo_len - entries, len);
		for (; room; --room, --len)
			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
	}

	/*
	 * Data fetching will start automatically if the EEPROM-read mode is
	 * activated. We have to keep up with the incoming data pace to
	 * prevent the Rx FIFO overflow causing the inbound data loss.
	 */
	len = dws->rx_len;
	buf = dws->rx;
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
		if (!entries) {
			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
			if (sts & SPI_INT_RXOI) {
				dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
				return -EIO;
			}
			continue;
		}
		entries = min(entries, len);
		for (; entries; --entries, --len)
			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
	}

	return 0;
}

static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
{
	return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
}

static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
{
	int retry = SPI_WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	ns = NSEC_PER_SEC / dws->current_freq * nents;
	ns *= dws->n_bytes * BITS_PER_BYTE;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_ctlr_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Mem op hanged up\n");
		return -EIO;
	}

	return 0;
}

static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
{
	spi_enable_chip(dws, 0);
	dw_spi_set_cs(spi, true);
	spi_enable_chip(dws, 1);
}

/*
 * The SPI memory operation implementation below is the best choice for the
 * devices, which are selected by the native chip-select lane. It's
 * specifically developed to workaround the problem with automatic chip-select
 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 * unavailable.
 */
static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
	struct dw_spi_cfg cfg;
	unsigned long flags;
	int ret;

	/*
	 * Collect the outbound data into a single buffer to speed the
	 * transmission up at least on the initial stage.
	 */
	ret = dw_spi_init_mem_buf(dws, op);
	if (ret)
		return ret;

	/*
	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
	 * operation. Transmit-only mode is suitable for the rest of them.
	 */
	cfg.dfs = 8;
670
	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	if (op->data.dir == SPI_MEM_DATA_IN) {
		cfg.tmode = SPI_TMOD_EPROMREAD;
		cfg.ndf = op->data.nbytes;
	} else {
		cfg.tmode = SPI_TMOD_TO;
	}

	spi_enable_chip(dws, 0);

	dw_spi_update_config(dws, mem->spi, &cfg);

	spi_mask_intr(dws, 0xff);

	spi_enable_chip(dws, 1);

	/*
	 * DW APB SSI controller has very nasty peculiarities. First originally
	 * (without any vendor-specific modifications) it doesn't provide a
	 * direct way to set and clear the native chip-select signal. Instead
	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
	 * transmission is going on, and automatically de-asserts it back to
	 * the high level if the Tx FIFO doesn't have anything to be pushed
	 * out. Due to that a multi-tasking or heavy IRQs activity might be
	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
	 * getting empty and sudden CS de-assertion, which in the middle of the
	 * transfer will most likely cause the data loss. Secondly the
	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
	 * data being automatically pulled in into the Rx FIFO. So if the
	 * driver software is late in fetching the data from the FIFO before
	 * it's overflown, new incoming data will be lost. In order to make
	 * sure the executed memory operations are CS-atomic and to prevent the
	 * Rx FIFO overflow we have to disable the local interrupts so to block
	 * any preemption during the subsequent IO operations.
	 *
	 * Note. At some circumstances disabling IRQs may not help to prevent
	 * the problems described above. The CS de-assertion and Rx FIFO
	 * overflow may still happen due to the relatively slow system bus or
	 * CPU not working fast enough, so the write-then-read algo implemented
	 * here just won't keep up with the SPI bus data transfer. Such
	 * situation is highly platform specific and is supposed to be fixed by
	 * manually restricting the SPI bus frequency using the
	 * dws->max_mem_freq parameter.
	 */
	local_irq_save(flags);
	preempt_disable();

	ret = dw_spi_write_then_read(dws, mem->spi);

	local_irq_restore(flags);
	preempt_enable();

	/*
	 * Wait for the operation being finished and check the controller
	 * status only if there hasn't been any run-time error detected. In the
	 * former case it's just pointless. In the later one to prevent an
	 * additional error message printing since any hw error flag being set
	 * would be due to an error detected on the data transfer.
	 */
	if (!ret) {
		ret = dw_spi_wait_mem_op_done(dws);
		if (!ret)
			ret = dw_spi_check_status(dws, true);
	}

	dw_spi_stop_mem_op(dws, mem->spi);

	dw_spi_free_mem_buf(dws);

	return ret;
}

/*
 * Initialize the default memory operations if a glue layer hasn't specified
 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 * controller doesn't have an embedded dirmap interface. Note the memory
 * operations implemented in this driver is the best choice only for the DW APB
 * SSI controller with standard native CS functionality. If a hardware vendor
 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 * be safer to use the normal SPI-messages-based transfers implementation.
 */
static void dw_spi_init_mem_ops(struct dw_spi *dws)
{
	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
	    !dws->set_cs) {
		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
758 759
		if (!dws->max_mem_freq)
			dws->max_mem_freq = dws->max_freq;
760 761 762
	}
}

763 764 765
/* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi)
{
766
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
767 768 769 770 771
	struct chip_data *chip;

	/* Only alloc on first setup */
	chip = spi_get_ctldata(spi);
	if (!chip) {
772 773 774
		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
		u32 rx_sample_dly_ns;

775
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
776 777
		if (!chip)
			return -ENOMEM;
778
		spi_set_ctldata(spi, chip);
779 780 781 782 783 784 785 786 787
		/* Get specific / default rx-sample-delay */
		if (device_property_read_u32(&spi->dev,
					     "rx-sample-delay-ns",
					     &rx_sample_dly_ns) != 0)
			/* Use default controller value */
			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
							NSEC_PER_SEC /
							dws->max_freq);
788 789
	}

790 791 792 793 794 795 796
	/*
	 * Update CR0 data each time the setup callback is invoked since
	 * the device parameters could have been changed, for instance, by
	 * the MMC SPI driver or something else.
	 */
	chip->cr0 = dw_spi_prepare_cr0(dws, spi);

797 798 799
	return 0;
}

800 801 802 803 804 805 806 807
static void dw_spi_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	kfree(chip);
	spi_set_ctldata(spi, NULL);
}

808
/* Restart the controller, disable all interrupts, clean rx fifo */
809
static void spi_hw_init(struct device *dev, struct dw_spi *dws)
810
{
811
	spi_reset_chip(dws);
812 813 814 815 816 817 818

	/*
	 * Try to detect the FIFO depth if not set by interface driver,
	 * the depth could be from 2 to 256 from HW spec
	 */
	if (!dws->fifo_len) {
		u32 fifo;
J
Jingoo Han 已提交
819

820
		for (fifo = 1; fifo < 256; fifo++) {
821 822
			dw_writel(dws, DW_SPI_TXFTLR, fifo);
			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
823 824
				break;
		}
825
		dw_writel(dws, DW_SPI_TXFTLR, 0);
826

827
		dws->fifo_len = (fifo == 1) ? 0 : fifo;
828
		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
829
	}
830 831

	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
832
	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
833
		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
834 835
}

B
Baruch Siach 已提交
836
int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
837
{
838
	struct spi_controller *master;
839 840
	int ret;

841 842
	if (!dws)
		return -EINVAL;
843

B
Baruch Siach 已提交
844 845 846
	master = spi_alloc_master(dev, 0);
	if (!master)
		return -ENOMEM;
847 848

	dws->master = master;
849
	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
850

851 852
	spi_controller_set_devdata(master, dws);

853 854 855
	/* Basic HW init */
	spi_hw_init(dev, dws);

856 857
	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
			  master);
858
	if (ret < 0 && ret != -ENOTCONN) {
859
		dev_err(dev, "can not get IRQ\n");
860 861 862
		goto err_free_master;
	}

863 864
	dw_spi_init_mem_ops(dws);

865
	master->use_gpio_descriptors = true;
866
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
867
	master->bits_per_word_mask =  SPI_BPW_RANGE_MASK(4, 16);
868 869 870
	master->bus_num = dws->bus_num;
	master->num_chipselect = dws->num_cs;
	master->setup = dw_spi_setup;
871
	master->cleanup = dw_spi_cleanup;
872 873 874 875
	if (dws->set_cs)
		master->set_cs = dws->set_cs;
	else
		master->set_cs = dw_spi_set_cs;
876 877
	master->transfer_one = dw_spi_transfer_one;
	master->handle_err = dw_spi_handle_err;
878
	master->mem_ops = &dws->mem_ops;
879
	master->max_speed_hz = dws->max_freq;
880
	master->dev.of_node = dev->of_node;
J
Jay Fang 已提交
881
	master->dev.fwnode = dev->fwnode;
882
	master->flags = SPI_MASTER_GPIO_SS;
883
	master->auto_runtime_pm = true;
884

885 886 887 888
	/* Get default rx sample delay */
	device_property_read_u32(dev, "rx-sample-delay-ns",
				 &dws->def_rx_sample_dly_ns);

F
Feng Tang 已提交
889
	if (dws->dma_ops && dws->dma_ops->dma_init) {
890
		ret = dws->dma_ops->dma_init(dev, dws);
F
Feng Tang 已提交
891
		if (ret) {
A
Andy Shevchenko 已提交
892
			dev_warn(dev, "DMA init failed\n");
893 894
		} else {
			master->can_dma = dws->dma_ops->can_dma;
S
Serge Semin 已提交
895
			master->flags |= SPI_CONTROLLER_MUST_TX;
F
Feng Tang 已提交
896 897 898
		}
	}

899
	ret = spi_register_controller(master);
900 901
	if (ret) {
		dev_err(&master->dev, "problem registering spi master\n");
902
		goto err_dma_exit;
903 904
	}

905
	dw_spi_debugfs_init(dws);
906 907
	return 0;

908
err_dma_exit:
F
Feng Tang 已提交
909 910
	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);
911
	spi_enable_chip(dws, 0);
912
	free_irq(dws->irq, master);
913
err_free_master:
914
	spi_controller_put(master);
915 916
	return ret;
}
917
EXPORT_SYMBOL_GPL(dw_spi_add_host);
918

919
void dw_spi_remove_host(struct dw_spi *dws)
920
{
921
	dw_spi_debugfs_remove(dws);
922

923 924
	spi_unregister_controller(dws->master);

F
Feng Tang 已提交
925 926
	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);
927 928

	spi_shutdown_chip(dws);
929 930

	free_irq(dws->irq, dws->master);
931
}
932
EXPORT_SYMBOL_GPL(dw_spi_remove_host);
933 934 935

int dw_spi_suspend_host(struct dw_spi *dws)
{
936
	int ret;
937

938
	ret = spi_controller_suspend(dws->master);
939 940
	if (ret)
		return ret;
941 942 943

	spi_shutdown_chip(dws);
	return 0;
944
}
945
EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
946 947 948

int dw_spi_resume_host(struct dw_spi *dws)
{
949
	spi_hw_init(&dws->master->dev, dws);
950
	return spi_controller_resume(dws->master);
951
}
952
EXPORT_SYMBOL_GPL(dw_spi_resume_host);
953 954 955 956

MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
MODULE_LICENSE("GPL v2");