sched_fair.c 130.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
A
Arjan van de Ven 已提交
26

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30
 *
31
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
32 33 34
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
35
 *
I
Ingo Molnar 已提交
36 37
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
38
 */
39 40
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41

42 43 44 45 46 47 48 49 50 51 52 53
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

54
/*
55
 * Minimal preemption granularity for CPU-bound tasks:
56
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57
 */
58 59
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60 61

/*
62 63
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
64
static unsigned int sched_nr_latency = 8;
65 66

/*
67
 * After fork, child runs first. If set to 0 (default) then
68
 * parent will (try to) run first.
69
 */
70
unsigned int sysctl_sched_child_runs_first __read_mostly;
71 72 73

/*
 * SCHED_OTHER wake-up granularity.
74
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 76 77 78 79
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
80
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82

83 84
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

85 86 87 88 89 90 91
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

106 107
static const struct sched_class fair_sched_class;

108 109 110 111
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

112
#ifdef CONFIG_FAIR_GROUP_SCHED
113

114
/* cpu runqueue to which this cfs_rq is attached */
115 116
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
117
	return cfs_rq->rq;
118 119
}

120 121
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
122

123 124 125 126 127 128 129 130
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

152 153 154
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
155 156 157 158 159 160 161 162 163 164 165 166
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
167
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
168
		}
169 170 171 172 173 174 175 176 177 178 179 180 181

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

244 245 246 247 248 249
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
250

251 252 253
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
254 255 256 257
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
258 259
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
260

P
Peter Zijlstra 已提交
261
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262
{
P
Peter Zijlstra 已提交
263
	return &task_rq(p)->cfs;
264 265
}

P
Peter Zijlstra 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

280 281 282 283 284 285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

302 303 304 305 306
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
307 308
#endif	/* CONFIG_FAIR_GROUP_SCHED */

309 310
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				   unsigned long delta_exec);
311 312 313 314 315

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

316
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
317
{
318 319
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
320 321 322 323 324
		min_vruntime = vruntime;

	return min_vruntime;
}

325
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

334 335 336 337 338 339
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

340 341 342 343 344 345 346 347 348 349 350 351
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
352
		if (!cfs_rq->curr)
353 354 355 356 357 358
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
359 360 361 362
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
363 364
}

365 366 367
/*
 * Enqueue an entity into the rb-tree:
 */
368
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
385
		if (entity_before(se, entry)) {
386 387 388 389 390 391 392 393 394 395 396
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
397
	if (leftmost)
I
Ingo Molnar 已提交
398
		cfs_rq->rb_leftmost = &se->run_node;
399 400 401 402 403

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

404
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
405
{
P
Peter Zijlstra 已提交
406 407 408 409 410 411
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
412

413 414 415
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

416
static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
417
{
418 419 420 421 422 423
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
424 425
}

426 427 428 429 430 431 432 433 434 435 436
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
437
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
438
{
439
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
440

441 442
	if (!last)
		return NULL;
443 444

	return rb_entry(last, struct sched_entity, run_node);
445 446
}

447 448 449 450
/**************************************************************
 * Scheduling class statistics methods:
 */

451
int sched_proc_update_handler(struct ctl_table *table, int write,
452
		void __user *buffer, size_t *lenp,
453 454
		loff_t *ppos)
{
455
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456
	int factor = get_update_sysctl_factor();
457 458 459 460 461 462 463

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

464 465 466 467 468 469 470
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

471 472 473
	return 0;
}
#endif
474

475
/*
476
 * delta /= w
477 478 479 480
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
481 482
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
483 484 485 486

	return delta;
}

487 488 489 490 491 492 493 494
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
495 496 497
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
498
	unsigned long nr_latency = sched_nr_latency;
499 500

	if (unlikely(nr_running > nr_latency)) {
501
		period = sysctl_sched_min_granularity;
502 503 504 505 506 507
		period *= nr_running;
	}

	return period;
}

508 509 510 511
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
512
 * s = p*P[w/rw]
513
 */
P
Peter Zijlstra 已提交
514
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
515
{
M
Mike Galbraith 已提交
516
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
517

M
Mike Galbraith 已提交
518
	for_each_sched_entity(se) {
L
Lin Ming 已提交
519
		struct load_weight *load;
520
		struct load_weight lw;
L
Lin Ming 已提交
521 522 523

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
524

M
Mike Galbraith 已提交
525
		if (unlikely(!se->on_rq)) {
526
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
527 528 529 530 531 532 533

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
534 535
}

536
/*
537
 * We calculate the vruntime slice of a to be inserted task
538
 *
539
 * vs = s/w
540
 */
541
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
542
{
543
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
544 545
}

546
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
547
static void update_cfs_shares(struct cfs_rq *cfs_rq);
548

549 550 551 552 553
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
554 555
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
556
{
557
	unsigned long delta_exec_weighted;
558

559 560
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
561 562

	curr->sum_exec_runtime += delta_exec;
563
	schedstat_add(cfs_rq, exec_clock, delta_exec);
564
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
565

I
Ingo Molnar 已提交
566
	curr->vruntime += delta_exec_weighted;
567
	update_min_vruntime(cfs_rq);
568

P
Peter Zijlstra 已提交
569
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 571
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
572 573
}

574
static void update_curr(struct cfs_rq *cfs_rq)
575
{
576
	struct sched_entity *curr = cfs_rq->curr;
577
	u64 now = rq_of(cfs_rq)->clock_task;
578 579 580 581 582 583 584 585 586 587
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
588
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
589 590
	if (!delta_exec)
		return;
591

I
Ingo Molnar 已提交
592 593
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
594 595 596 597

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

598
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599
		cpuacct_charge(curtask, delta_exec);
600
		account_group_exec_runtime(curtask, delta_exec);
601
	}
602 603

	account_cfs_rq_runtime(cfs_rq, delta_exec);
604 605 606
}

static inline void
607
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
608
{
609
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
610 611 612 613 614
}

/*
 * Task is being enqueued - update stats:
 */
615
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
616 617 618 619 620
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
621
	if (se != cfs_rq->curr)
622
		update_stats_wait_start(cfs_rq, se);
623 624 625
}

static void
626
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
628 629 630 631 632
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
633 634 635
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
636
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
637 638
	}
#endif
639
	schedstat_set(se->statistics.wait_start, 0);
640 641 642
}

static inline void
643
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 645 646 647 648
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
649
	if (se != cfs_rq->curr)
650
		update_stats_wait_end(cfs_rq, se);
651 652 653 654 655 656
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
657
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
658 659 660 661
{
	/*
	 * We are starting a new run period:
	 */
662
	se->exec_start = rq_of(cfs_rq)->clock_task;
663 664 665 666 667 668
}

/**************************************************
 * Scheduling class queueing methods:
 */

669 670 671 672 673 674 675 676 677 678 679 680 681
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

682 683 684 685
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
686 687
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
688
	if (entity_is_task(se)) {
689
		add_cfs_task_weight(cfs_rq, se->load.weight);
690 691
		list_add(&se->group_node, &cfs_rq->tasks);
	}
692 693 694 695 696 697 698
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
699 700
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
701
	if (entity_is_task(se)) {
702
		add_cfs_task_weight(cfs_rq, -se->load.weight);
703 704
		list_del_init(&se->group_node);
	}
705 706 707
	cfs_rq->nr_running--;
}

708
#ifdef CONFIG_FAIR_GROUP_SCHED
709 710
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
711
# ifdef CONFIG_SMP
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
728
{
729
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
730
	u64 now, delta;
731
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
732

733
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
734 735
		return;

736
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
737 738
	delta = now - cfs_rq->load_stamp;

739 740 741 742 743
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
744
		delta = period - 1;
745 746
	}

P
Peter Zijlstra 已提交
747
	cfs_rq->load_stamp = now;
748
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
749
	cfs_rq->load_period += delta;
750 751 752 753
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
754

755 756 757 758 759
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
770

771 772
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

791
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
792
{
793
	long tg_weight, load, shares;
794

795
	tg_weight = calc_tg_weight(tg, cfs_rq);
796
	load = cfs_rq->load.weight;
797 798

	shares = (tg->shares * load);
799 800
	if (tg_weight)
		shares /= tg_weight;
801 802 803 804 805 806 807 808 809 810 811 812 813

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
814
		update_cfs_shares(cfs_rq);
815 816 817 818 819 820 821
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

822
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
823 824 825 826 827 828 829 830
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
831 832 833
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
834 835 836 837
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
838
		account_entity_dequeue(cfs_rq, se);
839
	}
P
Peter Zijlstra 已提交
840 841 842 843 844 845 846

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

847
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
848 849 850
{
	struct task_group *tg;
	struct sched_entity *se;
851
	long shares;
P
Peter Zijlstra 已提交
852 853 854

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
855
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
856
		return;
857 858 859 860
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
861
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
862 863 864 865

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
866
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
867 868 869
{
}

870
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
871 872
{
}
873 874 875 876

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
877 878
#endif /* CONFIG_FAIR_GROUP_SCHED */

879
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
880 881
{
#ifdef CONFIG_SCHEDSTATS
882 883 884 885 886
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

887 888
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
889 890 891 892

		if ((s64)delta < 0)
			delta = 0;

893 894
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
895

896 897
		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
898

899
		if (tsk) {
900
			account_scheduler_latency(tsk, delta >> 10, 1);
901 902
			trace_sched_stat_sleep(tsk, delta);
		}
903
	}
904 905
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
906 907 908 909

		if ((s64)delta < 0)
			delta = 0;

910 911
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
912

913 914
		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
915

916
		if (tsk) {
917
			if (tsk->in_iowait) {
918 919
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
920
				trace_sched_stat_iowait(tsk, delta);
921 922
			}

923 924 925 926 927 928 929 930 931 932 933
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
934
		}
935 936 937 938
	}
#endif
}

P
Peter Zijlstra 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

952 953 954
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
955
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
956

957 958 959 960 961 962
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
963
	if (initial && sched_feat(START_DEBIT))
964
		vruntime += sched_vslice(cfs_rq, se);
965

966
	/* sleeps up to a single latency don't count. */
967
	if (!initial) {
968
		unsigned long thresh = sysctl_sched_latency;
969

970 971 972 973 974 975
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
976

977
		vruntime -= thresh;
978 979
	}

980 981 982
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
983
	se->vruntime = vruntime;
984 985
}

986 987
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

988
static void
989
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
990
{
991 992 993 994
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
995
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
996 997
		se->vruntime += cfs_rq->min_vruntime;

998
	/*
999
	 * Update run-time statistics of the 'current'.
1000
	 */
1001
	update_curr(cfs_rq);
1002
	update_cfs_load(cfs_rq, 0);
P
Peter Zijlstra 已提交
1003
	account_entity_enqueue(cfs_rq, se);
1004
	update_cfs_shares(cfs_rq);
1005

1006
	if (flags & ENQUEUE_WAKEUP) {
1007
		place_entity(cfs_rq, se, 0);
1008
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1009
	}
1010

1011
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1012
	check_spread(cfs_rq, se);
1013 1014
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1015
	se->on_rq = 1;
1016

1017
	if (cfs_rq->nr_running == 1) {
1018
		list_add_leaf_cfs_rq(cfs_rq);
1019 1020
		check_enqueue_throttle(cfs_rq);
	}
1021 1022
}

1023
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1024
{
1025 1026 1027 1028 1029 1030 1031 1032
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1056 1057
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1058 1059 1060 1061 1062
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1063 1064 1065

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1066 1067
}

1068 1069
static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1070
static void
1071
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1072
{
1073 1074 1075 1076 1077
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

1078
	update_stats_dequeue(cfs_rq, se);
1079
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1080
#ifdef CONFIG_SCHEDSTATS
1081 1082 1083 1084
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1085
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1086
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1087
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1088
		}
1089
#endif
P
Peter Zijlstra 已提交
1090 1091
	}

P
Peter Zijlstra 已提交
1092
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1093

1094
	if (se != cfs_rq->curr)
1095
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1096
	se->on_rq = 0;
1097
	update_cfs_load(cfs_rq, 0);
1098
	account_entity_dequeue(cfs_rq, se);
1099 1100 1101 1102 1103 1104

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1105
	if (!(flags & DEQUEUE_SLEEP))
1106
		se->vruntime -= cfs_rq->min_vruntime;
1107

1108 1109 1110
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1111 1112
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1113 1114 1115 1116 1117
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1118
static void
I
Ingo Molnar 已提交
1119
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1120
{
1121
	unsigned long ideal_runtime, delta_exec;
1122 1123
	struct sched_entity *se;
	s64 delta;
1124

P
Peter Zijlstra 已提交
1125
	ideal_runtime = sched_slice(cfs_rq, curr);
1126
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1127
	if (delta_exec > ideal_runtime) {
1128
		resched_task(rq_of(cfs_rq)->curr);
1129 1130 1131 1132 1133
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1145 1146
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1147

1148 1149
	if (delta < 0)
		return;
1150

1151 1152
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1153 1154
}

1155
static void
1156
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1157
{
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1169
	update_stats_curr_start(cfs_rq, se);
1170
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1177
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1178
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1179 1180 1181
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1182
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1183 1184
}

1185 1186 1187
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1188 1189 1190 1191 1192 1193 1194
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1195
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1196
{
1197
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1198
	struct sched_entity *left = se;
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1209

1210 1211 1212 1213 1214 1215
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1216 1217 1218 1219 1220 1221
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1222
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1223 1224

	return se;
1225 1226
}

1227 1228
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1229
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1230 1231 1232 1233 1234 1235
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1236
		update_curr(cfs_rq);
1237

1238 1239 1240
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1241
	check_spread(cfs_rq, prev);
1242
	if (prev->on_rq) {
1243
		update_stats_wait_start(cfs_rq, prev);
1244 1245 1246
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1247
	cfs_rq->curr = NULL;
1248 1249
}

P
Peter Zijlstra 已提交
1250 1251
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1252 1253
{
	/*
1254
	 * Update run-time statistics of the 'current'.
1255
	 */
1256
	update_curr(cfs_rq);
1257

1258 1259 1260 1261 1262
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1263 1264 1265 1266 1267
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1268 1269 1270 1271
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1280
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1281
		check_preempt_tick(cfs_rq, curr);
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1298 1299 1300 1301 1302 1303

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1323 1324
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1325 1326 1327
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1328
	u64 amount = 0, min_amount, expires;
1329 1330 1331 1332 1333 1334 1335

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1336
	else {
P
Paul Turner 已提交
1337 1338 1339 1340 1341 1342 1343 1344
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1345
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1346
		}
1347 1348 1349 1350 1351 1352

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1353
	}
P
Paul Turner 已提交
1354
	expires = cfs_b->runtime_expires;
1355 1356 1357
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1358 1359 1360 1361 1362 1363 1364
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1365 1366

	return cfs_rq->runtime_remaining > 0;
1367 1368
}

P
Paul Turner 已提交
1369 1370 1371 1372 1373
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1374
{
P
Paul Turner 已提交
1375 1376 1377 1378 1379
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1380 1381
		return;

P
Paul Turner 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1407
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1408 1409 1410
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1411 1412
		return;

1413 1414 1415 1416 1417 1418
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1419 1420 1421 1422 1423
}

static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
						   unsigned long delta_exec)
{
1424
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1425 1426 1427 1428 1429
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1430 1431
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1432
	return cfs_bandwidth_used() && cfs_rq->throttled;
1433 1434
}

1435 1436 1437
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1438
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1494
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1504 1505 1506
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1527
	cfs_rq->throttled_timestamp = rq->clock;
1528 1529 1530 1531 1532
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1545
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1546 1547
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1548
	cfs_rq->throttled_timestamp = 0;
1549

1550 1551 1552 1553
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

1617 1618 1619 1620 1621 1622 1623 1624
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
1625 1626
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
1627 1628 1629 1630 1631 1632

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

1633 1634 1635
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
1636
	cfs_b->nr_periods += overrun;
1637

P
Paul Turner 已提交
1638 1639 1640 1641 1642 1643
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

1644 1645 1646 1647 1648 1649
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

1650 1651 1652
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
1687 1688 1689 1690 1691 1692 1693
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
1759 1760 1761
	if (!cfs_bandwidth_used())
		return;

1762
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

1800 1801 1802 1803 1804 1805 1806
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
1807 1808 1809
	if (!cfs_bandwidth_used())
		return;

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
1827 1828 1829
	if (!cfs_bandwidth_used())
		return;

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
1842 1843 1844
#else
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
1845 1846
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
1847
static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1848 1849 1850 1851 1852

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
1864 1865
#endif

1866 1867 1868 1869
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
1893
		if (rq->curr != p)
1894
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1895

1896
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1897 1898
	}
}
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1915
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1916 1917 1918 1919
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1920 1921 1922 1923

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1924 1925
#endif

1926 1927 1928 1929 1930
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1931
static void
1932
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1933 1934
{
	struct cfs_rq *cfs_rq;
1935
	struct sched_entity *se = &p->se;
1936 1937

	for_each_sched_entity(se) {
1938
		if (se->on_rq)
1939 1940
			break;
		cfs_rq = cfs_rq_of(se);
1941
		enqueue_entity(cfs_rq, se, flags);
1942 1943 1944 1945 1946 1947 1948 1949 1950

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
1951
		cfs_rq->h_nr_running++;
1952

1953
		flags = ENQUEUE_WAKEUP;
1954
	}
P
Peter Zijlstra 已提交
1955

P
Peter Zijlstra 已提交
1956
	for_each_sched_entity(se) {
1957
		cfs_rq = cfs_rq_of(se);
1958
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
1959

1960 1961 1962
		if (cfs_rq_throttled(cfs_rq))
			break;

1963
		update_cfs_load(cfs_rq, 0);
1964
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
1965 1966
	}

1967 1968
	if (!se)
		inc_nr_running(rq);
1969
	hrtick_update(rq);
1970 1971
}

1972 1973
static void set_next_buddy(struct sched_entity *se);

1974 1975 1976 1977 1978
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1979
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1980 1981
{
	struct cfs_rq *cfs_rq;
1982
	struct sched_entity *se = &p->se;
1983
	int task_sleep = flags & DEQUEUE_SLEEP;
1984 1985 1986

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1987
		dequeue_entity(cfs_rq, se, flags);
1988 1989 1990 1991 1992 1993 1994 1995 1996

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
1997
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
1998

1999
		/* Don't dequeue parent if it has other entities besides us */
2000 2001 2002 2003 2004 2005 2006
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2007 2008 2009

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2010
			break;
2011
		}
2012
		flags |= DEQUEUE_SLEEP;
2013
	}
P
Peter Zijlstra 已提交
2014

P
Peter Zijlstra 已提交
2015
	for_each_sched_entity(se) {
2016
		cfs_rq = cfs_rq_of(se);
2017
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2018

2019 2020 2021
		if (cfs_rq_throttled(cfs_rq))
			break;

2022
		update_cfs_load(cfs_rq, 0);
2023
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2024 2025
	}

2026 2027
	if (!se)
		dec_nr_running(rq);
2028
	hrtick_update(rq);
2029 2030
}

2031
#ifdef CONFIG_SMP
2032

2033
static void task_waking_fair(struct task_struct *p)
2034 2035 2036
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2037 2038 2039 2040
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2041

2042 2043 2044 2045 2046 2047 2048 2049
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2050

2051
	se->vruntime -= min_vruntime;
2052 2053
}

2054
#ifdef CONFIG_FAIR_GROUP_SCHED
2055 2056 2057 2058 2059 2060
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2104
 */
P
Peter Zijlstra 已提交
2105
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2106
{
P
Peter Zijlstra 已提交
2107
	struct sched_entity *se = tg->se[cpu];
2108

2109
	if (!tg->parent)	/* the trivial, non-cgroup case */
2110 2111
		return wl;

P
Peter Zijlstra 已提交
2112
	for_each_sched_entity(se) {
2113
		long w, W;
P
Peter Zijlstra 已提交
2114

2115
		tg = se->my_q->tg;
2116

2117 2118 2119 2120
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2121

2122 2123 2124 2125
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2126

2127 2128 2129 2130 2131
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2132 2133
		else
			wl = tg->shares;
2134

2135 2136 2137 2138 2139
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2140 2141
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2142 2143 2144 2145

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2146
		wl -= se->load.weight;
2147 2148 2149 2150 2151 2152 2153 2154

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2155 2156
		wg = 0;
	}
2157

P
Peter Zijlstra 已提交
2158
	return wl;
2159 2160
}
#else
P
Peter Zijlstra 已提交
2161

2162 2163
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2164
{
2165
	return wl;
2166
}
P
Peter Zijlstra 已提交
2167

2168 2169
#endif

2170
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2171
{
2172
	s64 this_load, load;
2173
	int idx, this_cpu, prev_cpu;
2174
	unsigned long tl_per_task;
2175
	struct task_group *tg;
2176
	unsigned long weight;
2177
	int balanced;
2178

2179 2180 2181 2182 2183
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2184

2185 2186 2187 2188 2189
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2190 2191 2192 2193
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2194
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2195 2196
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2197

2198 2199
	tg = task_group(p);
	weight = p->se.load.weight;
2200

2201 2202
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2203 2204 2205
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2206 2207 2208 2209
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2210 2211
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2225

2226
	/*
I
Ingo Molnar 已提交
2227 2228 2229
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2230
	 */
2231 2232
	if (sync && balanced)
		return 1;
2233

2234
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2235 2236
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2237 2238 2239
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2240 2241 2242 2243 2244
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2245
		schedstat_inc(sd, ttwu_move_affine);
2246
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2247 2248 2249 2250 2251 2252

		return 1;
	}
	return 0;
}

2253 2254 2255 2256 2257
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2258
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2259
		  int this_cpu, int load_idx)
2260
{
2261
	struct sched_group *idlest = NULL, *group = sd->groups;
2262 2263
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2264

2265 2266 2267 2268
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2269

2270 2271
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2272
					tsk_cpus_allowed(p)))
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2292
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2318
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2319 2320 2321 2322 2323
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2324 2325 2326
		}
	}

2327 2328
	return idlest;
}
2329

2330 2331 2332
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2333
static int select_idle_sibling(struct task_struct *p, int target)
2334 2335 2336
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2337
	struct sched_domain *sd;
2338 2339
	struct sched_group *sg;
	int i, smt = 0;
2340 2341

	/*
2342 2343
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2344
	 */
2345 2346 2347 2348 2349 2350 2351 2352
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2353
		return prev_cpu;
2354 2355

	/*
2356
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2357
	 */
2358
	rcu_read_lock();
2359
again:
2360
	for_each_domain(target, sd) {
2361 2362
		if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
			continue;
2363

2364 2365 2366 2367
		if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
			if (!smt) {
				smt = 1;
				goto again;
2368
			}
2369
			break;
2370
		}
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}

			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
2389
	}
2390
done:
2391
	rcu_read_unlock();
2392 2393 2394 2395

	return target;
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2407
static int
2408
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2409
{
2410
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2411 2412 2413
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2414
	int want_affine = 0;
2415
	int want_sd = 1;
2416
	int sync = wake_flags & WF_SYNC;
2417

2418
	if (sd_flag & SD_BALANCE_WAKE) {
2419
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2420 2421 2422
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2423

2424
	rcu_read_lock();
2425
	for_each_domain(cpu, tmp) {
2426 2427 2428
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2429
		/*
2430 2431
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
2432
		 */
P
Peter Zijlstra 已提交
2433
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

2444
			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2445

P
Peter Zijlstra 已提交
2446 2447 2448 2449
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
2450
				want_sd = 0;
2451
		}
2452

2453
		/*
2454 2455
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2456
		 */
2457 2458 2459 2460
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
			want_affine = 0;
2461 2462
		}

2463 2464 2465
		if (!want_sd && !want_affine)
			break;

2466
		if (!(tmp->flags & sd_flag))
2467 2468
			continue;

2469 2470 2471 2472
		if (want_sd)
			sd = tmp;
	}

2473
	if (affine_sd) {
2474
		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2475 2476 2477 2478
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
2479
	}
2480

2481
	while (sd) {
2482
		int load_idx = sd->forkexec_idx;
2483
		struct sched_group *group;
2484
		int weight;
2485

2486
		if (!(sd->flags & sd_flag)) {
2487 2488 2489
			sd = sd->child;
			continue;
		}
2490

2491 2492
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
2493

2494
		group = find_idlest_group(sd, p, cpu, load_idx);
2495 2496 2497 2498
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
2499

2500
		new_cpu = find_idlest_cpu(group, p, cpu);
2501 2502 2503 2504
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
2505
		}
2506 2507 2508

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
2509
		weight = sd->span_weight;
2510 2511
		sd = NULL;
		for_each_domain(cpu, tmp) {
2512
			if (weight <= tmp->span_weight)
2513
				break;
2514
			if (tmp->flags & sd_flag)
2515 2516 2517
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
2518
	}
2519 2520
unlock:
	rcu_read_unlock();
2521

2522
	return new_cpu;
2523 2524 2525
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
2526 2527
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2528 2529 2530 2531
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
2532 2533
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
2543
	 */
2544
	return calc_delta_fair(gran, se);
2545 2546
}

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
2569
	gran = wakeup_gran(curr, se);
2570 2571 2572 2573 2574 2575
	if (vdiff > gran)
		return 1;

	return 0;
}

2576 2577
static void set_last_buddy(struct sched_entity *se)
{
2578 2579 2580 2581 2582
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
2583 2584 2585 2586
}

static void set_next_buddy(struct sched_entity *se)
{
2587 2588 2589 2590 2591
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
2592 2593
}

2594 2595
static void set_skip_buddy(struct sched_entity *se)
{
2596 2597
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
2598 2599
}

2600 2601 2602
/*
 * Preempt the current task with a newly woken task if needed:
 */
2603
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2604 2605
{
	struct task_struct *curr = rq->curr;
2606
	struct sched_entity *se = &curr->se, *pse = &p->se;
2607
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2608
	int scale = cfs_rq->nr_running >= sched_nr_latency;
2609
	int next_buddy_marked = 0;
2610

I
Ingo Molnar 已提交
2611 2612 2613
	if (unlikely(se == pse))
		return;

2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * This is possible from callers such as pull_task(), in which we
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

2623
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
2624
		set_next_buddy(pse);
2625 2626
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
2627

2628 2629 2630
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
2631 2632 2633 2634 2635 2636
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
2637 2638 2639 2640
	 */
	if (test_tsk_need_resched(curr))
		return;

2641 2642 2643 2644 2645
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

2646
	/*
2647 2648
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
2649
	 */
2650
	if (unlikely(p->policy != SCHED_NORMAL))
2651
		return;
2652

2653
	find_matching_se(&se, &pse);
2654
	update_curr(cfs_rq_of(se));
2655
	BUG_ON(!pse);
2656 2657 2658 2659 2660 2661 2662
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
2663
		goto preempt;
2664
	}
2665

2666
	return;
2667

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
2684 2685
}

2686
static struct task_struct *pick_next_task_fair(struct rq *rq)
2687
{
P
Peter Zijlstra 已提交
2688
	struct task_struct *p;
2689 2690 2691
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

2692
	if (!cfs_rq->nr_running)
2693 2694 2695
		return NULL;

	do {
2696
		se = pick_next_entity(cfs_rq);
2697
		set_next_entity(cfs_rq, se);
2698 2699 2700
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
2701 2702 2703 2704
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
2705 2706 2707 2708 2709
}

/*
 * Account for a descheduled task:
 */
2710
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2711 2712 2713 2714 2715 2716
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2717
		put_prev_entity(cfs_rq, se);
2718 2719 2720
	}
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
	}

	set_skip_buddy(se);
}

2751 2752 2753 2754
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

2755 2756
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

2767
#ifdef CONFIG_SMP
2768 2769 2770 2771
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
{
	deactivate_task(src_rq, p, 0);
	set_task_cpu(p, this_cpu);
	activate_task(this_rq, p, 0);
	check_preempt_curr(this_rq, p, 0);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
		     struct sched_domain *sd, enum cpu_idle_type idle,
		     int *all_pinned)
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2800
	if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
2801
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2802 2803 2804 2805 2806
		return 0;
	}
	*all_pinned = 0;

	if (task_running(rq, p)) {
2807
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2808 2809 2810 2811 2812 2813 2814 2815 2816
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2817
	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2818 2819 2820 2821 2822
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(sd, lb_hot_gained[idle]);
2823
			schedstat_inc(p, se.statistics.nr_forced_migrations);
2824 2825 2826 2827 2828 2829
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
2830
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2831 2832 2833 2834 2835
		return 0;
	}
	return 1;
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct task_struct *p, *n;
	struct cfs_rq *cfs_rq;
	int pinned = 0;

	for_each_leaf_cfs_rq(busiest, cfs_rq) {
		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2853 2854 2855
			if (throttled_lb_pair(task_group(p),
					      busiest->cpu, this_cpu))
				break;
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

			if (!can_migrate_task(p, busiest, this_cpu,
						sd, idle, &pinned))
				continue;

			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);
			return 1;
		}
	}

	return 0;
}

2875 2876 2877 2878
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
2879
	      struct cfs_rq *busiest_cfs_rq)
2880
{
K
Ken Chen 已提交
2881
	int loops = 0, pulled = 0;
2882
	long rem_load_move = max_load_move;
2883
	struct task_struct *p, *n;
2884 2885 2886 2887

	if (max_load_move == 0)
		goto out;

2888 2889 2890
	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
		if (loops++ > sysctl_sched_nr_migrate)
			break;
2891

2892
		if ((p->se.load.weight >> 1) > rem_load_move ||
K
Ken Chen 已提交
2893 2894
		    !can_migrate_task(p, busiest, this_cpu, sd, idle,
				      all_pinned))
2895
			continue;
2896

2897 2898 2899
		pull_task(busiest, p, this_rq, this_cpu);
		pulled++;
		rem_load_move -= p->se.load.weight;
2900 2901

#ifdef CONFIG_PREEMPT
2902 2903 2904 2905 2906 2907 2908
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE)
			break;
2909 2910
#endif

2911 2912 2913 2914 2915 2916
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (rem_load_move <= 0)
			break;
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	}
out:
	/*
	 * Right now, this is one of only two places pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);

	return max_load_move - rem_load_move;
}

P
Peter Zijlstra 已提交
2929
#ifdef CONFIG_FAIR_GROUP_SCHED
2930 2931 2932
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
2933
static int update_shares_cpu(struct task_group *tg, int cpu)
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
2948
	update_cfs_load(cfs_rq, 1);
2949 2950 2951 2952 2953

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
2954
	update_cfs_shares(cfs_rq);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
2967 2968 2969 2970
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
2971 2972 2973 2974 2975
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

2976
		update_shares_cpu(cfs_rq->tg, cpu);
2977
	}
2978 2979 2980
	rcu_read_unlock();
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
}

P
Peter Zijlstra 已提交
3009 3010 3011 3012
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
3013
		  int *all_pinned)
P
Peter Zijlstra 已提交
3014 3015
{
	long rem_load_move = max_load_move;
3016
	struct cfs_rq *busiest_cfs_rq;
P
Peter Zijlstra 已提交
3017 3018

	rcu_read_lock();
3019
	update_h_load(cpu_of(busiest));
P
Peter Zijlstra 已提交
3020

3021
	for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
P
Peter Zijlstra 已提交
3022 3023 3024 3025 3026
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
		u64 rem_load, moved_load;

		/*
3027
		 * empty group or part of a throttled hierarchy
P
Peter Zijlstra 已提交
3028
		 */
3029 3030
		if (!busiest_cfs_rq->task_weight ||
		    throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
P
Peter Zijlstra 已提交
3031 3032 3033 3034 3035 3036
			continue;

		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);

		moved_load = balance_tasks(this_rq, this_cpu, busiest,
3037
				rem_load, sd, idle, all_pinned,
P
Peter Zijlstra 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
				busiest_cfs_rq);

		if (!moved_load)
			continue;

		moved_load *= busiest_h_load;
		moved_load = div_u64(moved_load, busiest_weight + 1);

		rem_load_move -= moved_load;
		if (rem_load_move < 0)
			break;
	}
	rcu_read_unlock();

	return max_load_move - rem_load_move;
}
#else
3055 3056 3057 3058
static inline void update_shares(int cpu)
{
}

P
Peter Zijlstra 已提交
3059 3060 3061 3062
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
3063
		  int *all_pinned)
P
Peter Zijlstra 已提交
3064 3065 3066
{
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
3067
			&busiest->cfs);
P
Peter Zijlstra 已提交
3068 3069 3070
}
#endif

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3083
	unsigned long total_load_moved = 0, load_moved;
3084 3085

	do {
3086
		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3087
				max_load_move - total_load_moved,
3088
				sd, idle, all_pinned);
3089 3090

		total_load_moved += load_moved;
3091 3092 3093 3094 3095 3096 3097 3098 3099

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3100 3101 3102 3103

		if (raw_spin_is_contended(&this_rq->lock) ||
				raw_spin_is_contended(&busiest->lock))
			break;
3104
#endif
3105
	} while (load_moved && max_load_move > total_load_moved);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

	return total_load_moved > 0;
}

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3126
	unsigned long this_has_capacity;
3127
	unsigned int  this_idle_cpus;
3128 3129

	/* Statistics of the busiest group */
3130
	unsigned int  busiest_idle_cpus;
3131 3132 3133
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3134
	unsigned long busiest_group_capacity;
3135
	unsigned long busiest_has_capacity;
3136
	unsigned int  busiest_group_weight;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3158 3159
	unsigned long idle_cpus;
	unsigned long group_weight;
3160
	int group_imb; /* Is there an imbalance in the group ? */
3161
	int group_has_capacity; /* Is there extra capacity in the group? */
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
};

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}


#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3343
	return SCHED_POWER_SCALE;
3344 3345 3346 3347 3348 3349 3350 3351 3352
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3353
	unsigned long weight = sd->span_weight;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
3372 3373 3374 3375 3376 3377 3378

	if (unlikely(total < rq->rt_avg)) {
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
		available = total - rq->rt_avg;
	}
3379

3380 3381
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3382

3383
	total >>= SCHED_POWER_SHIFT;
3384 3385 3386 3387 3388 3389

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3390
	unsigned long weight = sd->span_weight;
3391
	unsigned long power = SCHED_POWER_SCALE;
3392 3393 3394 3395 3396 3397 3398 3399
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3400
		power >>= SCHED_POWER_SHIFT;
3401 3402
	}

3403
	sdg->sgp->power_orig = power;
3404 3405 3406 3407 3408 3409

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3410
	power >>= SCHED_POWER_SHIFT;
3411

3412
	power *= scale_rt_power(cpu);
3413
	power >>= SCHED_POWER_SHIFT;
3414 3415 3416 3417

	if (!power)
		power = 1;

3418
	cpu_rq(cpu)->cpu_power = power;
3419
	sdg->sgp->power = power;
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
}

static void update_group_power(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

	group = child->groups;
	do {
3437
		power += group->sgp->power;
3438 3439 3440
		group = group->next;
	} while (group != child->groups);

3441
	sdg->sgp->power = power;
3442 3443
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3455
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3456
	 */
P
Peter Zijlstra 已提交
3457
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3458 3459 3460 3461 3462
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3463
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3464 3465 3466 3467 3468
		return 1;

	return 0;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: The sched_domain whose statistics are to be updated.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3483
			enum cpu_idle_type idle, int load_idx,
3484 3485 3486
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
3487
	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3488 3489
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3490
	unsigned long avg_load_per_task = 0;
3491

3492
	if (local_group)
3493 3494 3495 3496 3497
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3498
	max_nr_running = 0;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
3513
			if (load > max_cpu_load) {
3514
				max_cpu_load = load;
3515 3516
				max_nr_running = rq->nr_running;
			}
3517 3518 3519 3520 3521 3522 3523
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3524 3525
		if (idle_cpu(i))
			sgs->idle_cpus++;
3526 3527 3528 3529 3530 3531 3532 3533
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3534 3535 3536 3537 3538 3539
	if (idle != CPU_NEWLY_IDLE && local_group) {
		if (balance_cpu != this_cpu) {
			*balance = 0;
			return;
		}
		update_group_power(sd, this_cpu);
3540 3541 3542
	}

	/* Adjust by relative CPU power of the group */
3543
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3544 3545 3546

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
3547
	 * than the average weight of a task.
3548 3549 3550 3551 3552 3553
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3554 3555
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3556

P
Peter Zijlstra 已提交
3557
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3558 3559
		sgs->group_imb = 1;

3560
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3561
						SCHED_POWER_SCALE);
3562 3563
	if (!sgs->group_capacity)
		sgs->group_capacity = fix_small_capacity(sd, group);
3564
	sgs->group_weight = group->group_weight;
3565 3566 3567

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
3568 3569
}

3570 3571 3572 3573 3574
/**
 * update_sd_pick_busiest - return 1 on busiest group
 * @sd: sched_domain whose statistics are to be checked
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
3575 3576
 * @sgs: sched_group statistics
 * @this_cpu: the current cpu
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
static bool update_sd_pick_busiest(struct sched_domain *sd,
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
				   struct sg_lb_stats *sgs,
				   int this_cpu)
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    this_cpu < group_first_cpu(sg)) {
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

3613
/**
3614
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3615 3616 3617 3618 3619 3620 3621 3622
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3623 3624
			enum cpu_idle_type idle, const struct cpumask *cpus,
			int *balance, struct sd_lb_stats *sds)
3625 3626
{
	struct sched_domain *child = sd->child;
3627
	struct sched_group *sg = sd->groups;
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

	init_sd_power_savings_stats(sd, sds, idle);
	load_idx = get_sd_load_idx(sd, idle);

	do {
		int local_group;

3640
		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3641
		memset(&sgs, 0, sizeof(sgs));
3642
		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3643 3644
				local_group, cpus, balance, &sgs);

P
Peter Zijlstra 已提交
3645
		if (local_group && !(*balance))
3646 3647 3648
			return;

		sds->total_load += sgs.group_load;
3649
		sds->total_pwr += sg->sgp->power;
3650 3651 3652

		/*
		 * In case the child domain prefers tasks go to siblings
3653
		 * first, lower the sg capacity to one so that we'll try
3654 3655 3656 3657 3658 3659
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
3660
		 */
3661
		if (prefer_sibling && !local_group && sds->this_has_capacity)
3662 3663 3664 3665
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
3666
			sds->this = sg;
3667 3668
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
3669
			sds->this_has_capacity = sgs.group_has_capacity;
3670
			sds->this_idle_cpus = sgs.idle_cpus;
3671
		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3672
			sds->max_load = sgs.avg_load;
3673
			sds->busiest = sg;
3674
			sds->busiest_nr_running = sgs.sum_nr_running;
3675
			sds->busiest_idle_cpus = sgs.idle_cpus;
3676
			sds->busiest_group_capacity = sgs.group_capacity;
3677
			sds->busiest_load_per_task = sgs.sum_weighted_load;
3678
			sds->busiest_has_capacity = sgs.group_has_capacity;
3679
			sds->busiest_group_weight = sgs.group_weight;
3680 3681 3682
			sds->group_imb = sgs.group_imb;
		}

3683 3684 3685 3686 3687
		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
		sg = sg->next;
	} while (sg != sd->groups);
}

M
Michael Neuling 已提交
3688
int __weak arch_sd_sibling_asym_packing(void)
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
{
       return 0*SD_ASYM_PACKING;
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
3710 3711 3712
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 * @sd: The sched_domain whose packing is to be checked.
 * @sds: Statistics of the sched_domain which is to be packed
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: returns amount of imbalanced due to packing.
 */
static int check_asym_packing(struct sched_domain *sd,
			      struct sd_lb_stats *sds,
			      int this_cpu, unsigned long *imbalance)
{
	int busiest_cpu;

	if (!(sd->flags & SD_ASYM_PACKING))
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
	if (this_cpu > busiest_cpu)
		return 0;

3734
	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
3735
				       SCHED_POWER_SCALE);
3736
	return 1;
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
3752
	unsigned long scaled_busy_load_per_task;
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

3763
	scaled_busy_load_per_task = sds->busiest_load_per_task
3764
					 * SCHED_POWER_SCALE;
3765
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
3766 3767 3768

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

3779
	pwr_now += sds->busiest->sgp->power *
3780
			min(sds->busiest_load_per_task, sds->max_load);
3781
	pwr_now += sds->this->sgp->power *
3782
			min(sds->this_load_per_task, sds->this_load);
3783
	pwr_now /= SCHED_POWER_SCALE;
3784 3785

	/* Amount of load we'd subtract */
3786
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3787
		sds->busiest->sgp->power;
3788
	if (sds->max_load > tmp)
3789
		pwr_move += sds->busiest->sgp->power *
3790 3791 3792
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3793
	if (sds->max_load * sds->busiest->sgp->power <
3794
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
3795 3796
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
3797
	else
3798
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3799 3800
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
3801
			min(sds->this_load_per_task, sds->this_load + tmp);
3802
	pwr_move /= SCHED_POWER_SCALE;
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
3819 3820 3821 3822 3823 3824 3825 3826
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

3837 3838 3839 3840 3841 3842 3843
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

3844
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3845

3846
		load_above_capacity /= sds->busiest->sgp->power;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3860 3861

	/* How much load to actually move to equalise the imbalance */
3862 3863
	*imbalance = min(max_pull * sds->busiest->sgp->power,
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
3864
			/ SCHED_POWER_SCALE;
3865 3866 3867

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
3868
	 * there is no guarantee that any tasks will be moved so we'll have
3869 3870 3871 3872 3873 3874 3875
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
3876

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
3906
		   const struct cpumask *cpus, int *balance)
3907 3908 3909 3910 3911 3912 3913 3914 3915
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
3916
	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3917

3918 3919 3920
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
3921
	 */
P
Peter Zijlstra 已提交
3922
	if (!(*balance))
3923 3924
		goto ret;

3925 3926 3927 3928
	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(sd, &sds, this_cpu, imbalance))
		return sds.busiest;

3929
	/* There is no busy sibling group to pull tasks from */
3930 3931 3932
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

3933
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3934

P
Peter Zijlstra 已提交
3935 3936 3937 3938 3939 3940 3941 3942
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

3943
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3944 3945 3946 3947
	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
			!sds.busiest_has_capacity)
		goto force_balance;

3948 3949 3950 3951
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
3952 3953 3954
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

3955 3956 3957 3958
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
3959 3960 3961
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

3962
	if (idle == CPU_IDLE) {
3963 3964 3965 3966 3967 3968
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
3969
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3970 3971
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
3972 3973 3974 3975 3976 3977 3978
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
			goto out_balanced;
3979
	}
3980

3981
force_balance:
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
	return sds.busiest;

out_balanced:
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
ret:
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
static struct rq *
4002 4003 4004
find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
		   enum cpu_idle_type idle, unsigned long imbalance,
		   const struct cpumask *cpus)
4005 4006 4007 4008 4009 4010 4011
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4012 4013
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4014 4015
		unsigned long wl;

4016 4017 4018
		if (!capacity)
			capacity = fix_small_capacity(sd, group);

4019 4020 4021 4022
		if (!cpumask_test_cpu(i, cpus))
			continue;

		rq = cpu_rq(i);
4023
		wl = weighted_cpuload(i);
4024

4025 4026 4027 4028
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4029 4030 4031
		if (capacity && rq->nr_running == 1 && wl > imbalance)
			continue;

4032 4033 4034 4035 4036 4037
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4038
		wl = (wl * SCHED_POWER_SCALE) / power;
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

4058
static int need_active_balance(struct sched_domain *sd, int idle,
4059
			       int busiest_cpu, int this_cpu)
4060 4061
{
	if (idle == CPU_NEWLY_IDLE) {
4062 4063 4064 4065 4066 4067 4068 4069 4070

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
			return 1;

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package.
		 *
		 * The package power saving logic comes from
		 * find_busiest_group(). If there are no imbalance, then
		 * f_b_g() will return NULL. However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */
		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return 0;
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4097 4098
static int active_load_balance_cpu_stop(void *data);

4099 4100 4101 4102 4103 4104 4105 4106
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4107
	int ld_moved, all_pinned = 0, active_balance = 0;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	struct sched_group *group;
	unsigned long imbalance;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
4119
	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
				   cpus, balance);

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4130
	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == this_rq);

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
K
Ken Chen 已提交
4148
		all_pinned = 1;
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
		local_irq_save(flags);
		double_rq_lock(this_rq, busiest);
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
				      imbalance, sd, idle, &all_pinned);
		double_rq_unlock(this_rq, busiest);
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
		if (ld_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(all_pinned)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
				goto redo;
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4173 4174 4175 4176 4177 4178 4179 4180
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4181

4182
		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4183 4184
			raw_spin_lock_irqsave(&busiest->lock, flags);

4185 4186 4187
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4188 4189
			 */
			if (!cpumask_test_cpu(this_cpu,
4190
					tsk_cpus_allowed(busiest->curr))) {
4191 4192 4193 4194 4195 4196
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				all_pinned = 1;
				goto out_one_pinned;
			}

4197 4198 4199 4200 4201
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4202 4203 4204 4205 4206 4207
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4208

4209
			if (active_balance)
4210 4211 4212
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4250
	ld_moved = 0;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static void idle_balance(int this_cpu, struct rq *this_rq)
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4270 4271 4272 4273 4274
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4275
	update_shares(this_cpu);
4276
	rcu_read_lock();
4277 4278
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4279
		int balance = 1;
4280 4281 4282 4283

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4284
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4285
			/* If we've pulled tasks over stop searching: */
4286 4287 4288
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4289 4290 4291 4292

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4293 4294
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4295
			break;
N
Nikhil Rao 已提交
4296
		}
4297
	}
4298
	rcu_read_unlock();
4299 4300 4301

	raw_spin_lock(&this_rq->lock);

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4312 4313 4314 4315
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4316
 */
4317
static int active_load_balance_cpu_stop(void *data)
4318
{
4319 4320
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4321
	int target_cpu = busiest_rq->push_cpu;
4322
	struct rq *target_rq = cpu_rq(target_cpu);
4323
	struct sched_domain *sd;
4324 4325 4326 4327 4328 4329 4330

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4331 4332 4333

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4334
		goto out_unlock;
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4347
	rcu_read_lock();
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		schedstat_inc(sd, alb_count);

		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4363
	rcu_read_unlock();
4364
	double_unlock_balance(busiest_rq, target_rq);
4365 4366 4367 4368
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4369 4370 4371
}

#ifdef CONFIG_NO_HZ
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/*
 * idle load balancing details
 * - One of the idle CPUs nominates itself as idle load_balancer, while
 *   entering idle.
 * - This idle load balancer CPU will also go into tickless mode when
 *   it is idle, just like all other idle CPUs
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4382 4383
static struct {
	atomic_t load_balancer;
4384 4385 4386 4387 4388 4389
	atomic_t first_pick_cpu;
	atomic_t second_pick_cpu;
	cpumask_var_t idle_cpus_mask;
	cpumask_var_t grp_idle_mask;
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
4411
		if (sd->flags & flag)
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
4443
	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
4444 4445 4446 4447 4448 4449
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
4450
	if (cpumask_empty(nohz.grp_idle_mask))
4451 4452
		return 0;

4453
	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;
4474
	int ilb = nr_cpu_ids;
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
4487
	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4488 4489
		goto out_done;

4490
	rcu_read_lock();
4491 4492 4493 4494
	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
4495 4496 4497 4498
			if (is_semi_idle_group(ilb_group)) {
				ilb = cpumask_first(nohz.grp_idle_mask);
				goto unlock;
			}
4499 4500 4501 4502 4503

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}
4504 4505
unlock:
	rcu_read_unlock();
4506 4507

out_done:
4508
	return ilb;
4509 4510 4511 4512
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4513
	return nr_cpu_ids;
4514 4515 4516
}
#endif

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = get_nohz_load_balancer();

	if (ilb_cpu >= nr_cpu_ids) {
		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
		if (ilb_cpu >= nr_cpu_ids)
			return;
	}

	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4538 4539 4540 4541 4542 4543 4544 4545 4546

		smp_mb();
		/*
		 * Use smp_send_reschedule() instead of resched_cpu().
		 * This way we generate a sched IPI on the target cpu which
		 * is idle. And the softirq performing nohz idle load balance
		 * will be run before returning from the IPI.
		 */
		smp_send_reschedule(ilb_cpu);
4547 4548 4549 4550
	}
	return;
}

4551 4552 4553
/*
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4554
 * load balancing on behalf of all those cpus.
4555
 *
4556 4557 4558
 * When the ilb owner becomes busy, we will not have new ilb owner until some
 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
 * idle load balancing by kicking one of the idle CPUs.
4559
 *
4560 4561 4562
 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
 * ilb owner CPU in future (when there is a need for idle load balancing on
 * behalf of all idle CPUs).
4563
 */
4564
void select_nohz_load_balancer(int stop_tick)
4565 4566 4567 4568 4569 4570
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
4571
				return;
4572 4573 4574 4575 4576

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4577 4578
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
4579 4580
				BUG();

4581
			return;
4582 4583
		}

4584
		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4585

4586 4587 4588 4589
		if (atomic_read(&nohz.first_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
		if (atomic_read(&nohz.second_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4590

4591
		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
4592 4593
			int new_ilb;

4594 4595 4596 4597 4598
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
					   cpu) != nr_cpu_ids)
				return;

4599 4600 4601 4602 4603 4604
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4605
				atomic_set(&nohz.load_balancer, nr_cpu_ids);
4606
				resched_cpu(new_ilb);
4607
				return;
4608
			}
4609
			return;
4610 4611
		}
	} else {
4612 4613
		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
			return;
4614

4615
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4616 4617

		if (atomic_read(&nohz.load_balancer) == cpu)
4618 4619
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
4620 4621
				BUG();
	}
4622
	return;
4623 4624 4625 4626 4627
}
#endif

static DEFINE_SPINLOCK(balancing);

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
static void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
4656 4657
	update_shares(cpu);

4658
	rcu_read_lock();
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
4669
		interval = clamp(interval, 1UL, max_load_balance_interval);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
4682
				 * longer idle.
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
4704
	rcu_read_unlock();
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

4715
#ifdef CONFIG_NO_HZ
4716
/*
4717
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4718 4719
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
		return;

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu)
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched()) {
			this_rq->nohz_balance_kick = 0;
			break;
		}

		raw_spin_lock_irq(&this_rq->lock);
4744
		update_rq_clock(this_rq);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		update_cpu_load(this_rq);
		raw_spin_unlock_irq(&this_rq->lock);

		rebalance_domains(balance_cpu, CPU_IDLE);

		rq = cpu_rq(balance_cpu);
		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
	this_rq->nohz_balance_kick = 0;
}

/*
 * Current heuristic for kicking the idle load balancer
 * - first_pick_cpu is the one of the busy CPUs. It will kick
 *   idle load balancer when it has more than one process active. This
 *   eliminates the need for idle load balancing altogether when we have
 *   only one running process in the system (common case).
 * - If there are more than one busy CPU, idle load balancer may have
 *   to run for active_load_balance to happen (i.e., two busy CPUs are
 *   SMT or core siblings and can run better if they move to different
 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
 *   which will kick idle load balancer as soon as it has any load.
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
	int ret;
	int first_pick_cpu, second_pick_cpu;

	if (time_before(now, nohz.next_balance))
		return 0;

4779
	if (idle_cpu(cpu))
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
		return 0;

	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);

	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
		return 0;

	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
	if (ret == nr_cpu_ids || ret == cpu) {
		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
		if (rq->nr_running > 1)
			return 1;
	} else {
		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
		if (ret == nr_cpu_ids || ret == cpu) {
			if (rq->nr_running)
				return 1;
		}
	}
	return 0;
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
4811 4812 4813 4814
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
4815
	enum cpu_idle_type idle = this_rq->idle_balance ?
4816 4817 4818 4819 4820
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
4821
	 * If this cpu has a pending nohz_balance_kick, then do the
4822 4823 4824
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
4825
	nohz_idle_balance(this_cpu, idle);
4826 4827 4828 4829
}

static inline int on_null_domain(int cpu)
{
4830
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
4842 4843 4844 4845
#ifdef CONFIG_NO_HZ
	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
		nohz_balancer_kick(cpu);
#endif
4846 4847
}

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

4858 4859 4860 4861 4862 4863 4864 4865 4866
#else	/* CONFIG_SMP */

/*
 * on UP we do not need to balance between CPUs:
 */
static inline void idle_balance(int cpu, struct rq *rq)
{
}

4867
#endif /* CONFIG_SMP */
4868

4869 4870 4871
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
4872
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4873 4874 4875 4876 4877 4878
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
4879
		entity_tick(cfs_rq, se, queued);
4880 4881 4882 4883
	}
}

/*
P
Peter Zijlstra 已提交
4884 4885 4886
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
4887
 */
P
Peter Zijlstra 已提交
4888
static void task_fork_fair(struct task_struct *p)
4889
{
P
Peter Zijlstra 已提交
4890
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
4891
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4892
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
4893 4894 4895
	struct rq *rq = this_rq();
	unsigned long flags;

4896
	raw_spin_lock_irqsave(&rq->lock, flags);
4897

4898 4899
	update_rq_clock(rq);

4900 4901
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
4902
		__set_task_cpu(p, this_cpu);
4903 4904
		rcu_read_unlock();
	}
4905

4906
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
4907

4908 4909
	if (curr)
		se->vruntime = curr->vruntime;
4910
	place_entity(cfs_rq, se, 1);
4911

P
Peter Zijlstra 已提交
4912
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
4913
		/*
4914 4915 4916
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
4917
		swap(curr->vruntime, se->vruntime);
4918
		resched_task(rq->curr);
4919
	}
4920

4921 4922
	se->vruntime -= cfs_rq->min_vruntime;

4923
	raw_spin_unlock_irqrestore(&rq->lock, flags);
4924 4925
}

4926 4927 4928 4929
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
4930 4931
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4932
{
P
Peter Zijlstra 已提交
4933 4934 4935
	if (!p->se.on_rq)
		return;

4936 4937 4938 4939 4940
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
4941
	if (rq->curr == p) {
4942 4943 4944
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
4945
		check_preempt_curr(rq, p, 0);
4946 4947
}

P
Peter Zijlstra 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
}

4972 4973 4974
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
4975
static void switched_to_fair(struct rq *rq, struct task_struct *p)
4976
{
P
Peter Zijlstra 已提交
4977 4978 4979
	if (!p->se.on_rq)
		return;

4980 4981 4982 4983 4984
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
4985
	if (rq->curr == p)
4986 4987
		resched_task(rq->curr);
	else
4988
		check_preempt_curr(rq, p, 0);
4989 4990
}

4991 4992 4993 4994 4995 4996 4997 4998 4999
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5000 5001 5002 5003 5004 5005 5006
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5007 5008
}

P
Peter Zijlstra 已提交
5009
#ifdef CONFIG_FAIR_GROUP_SCHED
5010
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5011
{
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5028
	if (!on_rq)
5029
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5030 5031 5032
}
#endif

5033
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5048 5049 5050
/*
 * All the scheduling class methods:
 */
5051 5052
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
5053 5054 5055
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5056
	.yield_to_task		= yield_to_task_fair,
5057

I
Ingo Molnar 已提交
5058
	.check_preempt_curr	= check_preempt_wakeup,
5059 5060 5061 5062

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5063
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5064 5065
	.select_task_rq		= select_task_rq_fair,

5066 5067
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5068 5069

	.task_waking		= task_waking_fair,
5070
#endif
5071

5072
	.set_curr_task          = set_curr_task_fair,
5073
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5074
	.task_fork		= task_fork_fair,
5075 5076

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5077
	.switched_from		= switched_from_fair,
5078
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5079

5080 5081
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5082
#ifdef CONFIG_FAIR_GROUP_SCHED
5083
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5084
#endif
5085 5086 5087
};

#ifdef CONFIG_SCHED_DEBUG
5088
static void print_cfs_stats(struct seq_file *m, int cpu)
5089 5090 5091
{
	struct cfs_rq *cfs_rq;

5092
	rcu_read_lock();
5093
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5094
		print_cfs_rq(m, cpu, cfs_rq);
5095
	rcu_read_unlock();
5096 5097
}
#endif