sched_fair.c 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

I
Ingo Molnar 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
	if (leftmost) {
		se = rb_entry(leftmost, struct sched_entity, run_node);
		cfs_rq->min_vruntime = max(se->vruntime,
						cfs_rq->min_vruntime);
	}
}

132 133 134
/*
 * Enqueue an entity into the rb-tree:
 */
135
static void
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
167
		set_leftmost(cfs_rq, &se->run_node);
168 169 170 171 172 173

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
174 175

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
176 177
}

178
static void
179 180 181
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
182 183
		set_leftmost(cfs_rq, rb_next(&se->run_node));

184 185 186 187
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
188 189

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
190 191 192 193 194 195 196 197 198 199 200 201
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

217 218 219 220
/**************************************************************
 * Scheduling class statistics methods:
 */

221 222 223 224 225 226 227 228 229 230 231 232 233 234
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
235
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
236
{
P
Peter Zijlstra 已提交
237
	u64 period = __sched_period(cfs_rq->nr_running);
238

P
Peter Zijlstra 已提交
239 240
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
241

P
Peter Zijlstra 已提交
242
	return period;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
287 288
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
289
{
I
Ingo Molnar 已提交
290
	unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
291 292 293
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

294
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295 296 297

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;
I
Ingo Molnar 已提交
298 299 300 301 302 303
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
304

305 306 307
	if (!sched_feat(FAIR_SLEEPERS))
		return;

I
Ingo Molnar 已提交
308 309 310
	if (unlikely(!load))
		return;

311 312 313
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
314
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
315
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
316 317
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

333
static void update_curr(struct cfs_rq *cfs_rq)
334
{
335
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
336
	u64 now = rq_of(cfs_rq)->clock;
337 338 339 340 341 342 343 344 345 346
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
347
	delta_exec = (unsigned long)(now - curr->exec_start);
348

I
Ingo Molnar 已提交
349 350
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
351 352 353
}

static inline void
354
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
355 356
{
	se->wait_start_fair = cfs_rq->fair_clock;
357
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
358 359 360
}

static inline unsigned long
I
Ingo Molnar 已提交
361
calc_weighted(unsigned long delta, struct sched_entity *se)
362
{
I
Ingo Molnar 已提交
363
	unsigned long weight = se->load.weight;
364

I
Ingo Molnar 已提交
365 366 367 368
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
369 370 371 372 373
}

/*
 * Task is being enqueued - update stats:
 */
374
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 376 377 378 379
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
380
	if (se != cfs_rq->curr)
381
		update_stats_wait_start(cfs_rq, se);
382 383 384
	/*
	 * Update the key:
	 */
I
Ingo Molnar 已提交
385
	se->fair_key = se->vruntime;
386 387 388 389 390 391
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
I
Ingo Molnar 已提交
392 393
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
			unsigned long delta_fair)
394
{
395 396
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
397

I
Ingo Molnar 已提交
398
	delta_fair = calc_weighted(delta_fair, se);
399 400 401 402 403

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
404
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 406 407
{
	unsigned long delta_fair;

408 409 410
	if (unlikely(!se->wait_start_fair))
		return;

411 412 413
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

I
Ingo Molnar 已提交
414
	__update_stats_wait_end(cfs_rq, se, delta_fair);
415 416

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
417
	schedstat_set(se->wait_start, 0);
418 419 420
}

static inline void
421
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
422
{
423
	update_curr(cfs_rq);
424 425 426 427
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
428
	if (se != cfs_rq->curr)
429
		update_stats_wait_end(cfs_rq, se);
430 431 432 433 434 435
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
436
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
437 438 439 440
{
	/*
	 * We are starting a new run period:
	 */
441
	se->exec_start = rq_of(cfs_rq)->clock;
442 443 444 445 446 447
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
448
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
449 450 451 452 453 454 455 456
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

I
Ingo Molnar 已提交
457 458
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
			      unsigned long delta_fair)
459
{
I
Ingo Molnar 已提交
460
	unsigned long load = cfs_rq->load.weight;
461 462
	long prev_runtime;

463 464 465 466 467 468 469
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

P
Peter Zijlstra 已提交
470
	if (sched_feat(SLEEPER_LOAD_AVG))
471 472 473 474 475 476
		load = rq_of(cfs_rq)->cpu_load[2];

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
P
Peter Zijlstra 已提交
477
	if (sched_feat(SLEEPER_AVG))
478 479 480
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

I
Ingo Molnar 已提交
481
	delta_fair = calc_weighted(delta_fair, se);
482 483 484 485 486 487 488 489 490 491 492

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

493
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 495 496 497 498
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
P
Peter Zijlstra 已提交
499
			 !sched_feat(FAIR_SLEEPERS))
500 501 502 503 504
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

I
Ingo Molnar 已提交
505
	__enqueue_sleeper(cfs_rq, se, delta_fair);
506 507 508 509 510

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
511
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
512 513 514 515 516 517 518 519 520 521 522

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
523
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
524 525 526 527 528 529 530 531 532

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
533 534 535 536 537 538 539 540 541 542

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
543 544 545 546
	}
#endif
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	struct sched_entity *last = __pick_last_entity(cfs_rq);
	u64 min_runtime, latency;

	min_runtime = cfs_rq->min_vruntime;
	if (last) {
		min_runtime += last->vruntime;
		min_runtime >>= 1;
		if (initial && sched_feat(START_DEBIT))
			min_runtime += sysctl_sched_latency/2;
	}

	if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
		latency = sysctl_sched_latency;
		if (min_runtime > latency)
			min_runtime -= latency;
		else
			min_runtime = 0;
	}

	se->vruntime = max(se->vruntime, min_runtime);
}

572
static void
573
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
574 575 576 577
{
	/*
	 * Update the fair clock.
	 */
578
	update_curr(cfs_rq);
579

I
Ingo Molnar 已提交
580
	if (wakeup) {
581
		place_entity(cfs_rq, se, 0);
582
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
583
	}
584

585
	update_stats_enqueue(cfs_rq, se);
586 587 588 589
	__enqueue_entity(cfs_rq, se);
}

static void
590
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
591
{
592
	update_stats_dequeue(cfs_rq, se);
593 594 595 596 597 598 599
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
600
				se->sleep_start = rq_of(cfs_rq)->clock;
601
			if (tsk->state & TASK_UNINTERRUPTIBLE)
602
				se->block_start = rq_of(cfs_rq)->clock;
603 604 605 606 607 608 609 610 611
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
612
static void
I
Ingo Molnar 已提交
613
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
614
{
615 616
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
617
	ideal_runtime = sched_slice(cfs_rq, curr);
618 619
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
620 621 622 623
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
624
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 626 627 628 629 630 631 632
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
633
	update_stats_wait_end(cfs_rq, se);
634
	update_stats_curr_start(cfs_rq, se);
635
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
636 637 638 639 640 641 642 643 644 645 646
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
647
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
648 649
}

650
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
651 652 653
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

654
	set_next_entity(cfs_rq, se);
655 656 657 658

	return se;
}

659
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
660 661 662 663 664 665
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
666
		update_curr(cfs_rq);
667

668
	update_stats_curr_end(cfs_rq, prev);
669 670

	if (prev->on_rq)
671
		update_stats_wait_start(cfs_rq, prev);
672
	cfs_rq->curr = NULL;
673 674 675 676 677 678 679 680
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
681
	dequeue_entity(cfs_rq, curr, 0);
682
	enqueue_entity(cfs_rq, curr, 0);
683

I
Ingo Molnar 已提交
684 685
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
781
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
782 783 784 785 786 787 788 789
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
790
		enqueue_entity(cfs_rq, se, wakeup);
791 792 793 794 795 796 797 798
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
799
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
800 801 802 803 804 805
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
806
		dequeue_entity(cfs_rq, se, sleep);
807 808 809 810 811 812 813
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
814 815 816
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
817 818 819 820
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
821 822 823
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
824 825

	/*
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
844
	 */
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
870 871 872 873 874
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
875
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
876 877 878 879 880
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
881
		update_rq_clock(rq);
882
		update_curr(cfs_rq);
883 884 885
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
886 887
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
888

I
Ingo Molnar 已提交
889 890 891
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
892 893
}

894
static struct task_struct *pick_next_task_fair(struct rq *rq)
895 896 897 898 899 900 901 902
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
903
		se = pick_next_entity(cfs_rq);
904 905 906 907 908 909 910 911 912
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
913
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
914 915 916 917 918 919
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
920
		put_prev_entity(cfs_rq, se);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

963
#ifdef CONFIG_FAIR_GROUP_SCHED
964 965 966 967 968 969 970 971 972 973 974 975 976
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
977
#endif
978

P
Peter Williams 已提交
979
static unsigned long
980
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
981 982 983
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
984 985 986 987 988 989 990 991 992 993
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
994
#ifdef CONFIG_FAIR_GROUP_SCHED
995
		struct cfs_rq *this_cfs_rq;
996
		long imbalance;
997 998 999 1000
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1001
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1002 1003 1004 1005 1006 1007 1008 1009
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1010 1011
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1012
# define maxload rem_load_move
1013
#endif
1014 1015 1016 1017 1018 1019
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1020
				&load_moved, this_best_prio, &cfs_rq_iterator);
1021 1022 1023 1024 1025 1026 1027 1028 1029

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1030
	return max_load_move - rem_load_move;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1047 1048
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

1049 1050 1051 1052 1053 1054 1055
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1056
static void task_new_fair(struct rq *rq, struct task_struct *p)
1057 1058
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1059
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1060 1061 1062

	sched_info_queued(p);

1063
	update_curr(cfs_rq);
1064
	place_entity(cfs_rq, se, 1);
1065

1066 1067 1068 1069
	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
P
Peter Zijlstra 已提交
1070
	if (sched_feat(START_DEBIT))
1071 1072 1073 1074 1075 1076 1077 1078 1079
		se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {

		dequeue_entity(cfs_rq, curr, 0);
		swap(curr->vruntime, se->vruntime);
		enqueue_entity(cfs_rq, curr, 0);
	}
1080

I
Ingo Molnar 已提交
1081
	update_stats_enqueue(cfs_rq, se);
1082
	__enqueue_entity(cfs_rq, se);
1083
	resched_task(rq->curr);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1094
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1095

1096 1097
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1113
	.check_preempt_curr	= check_preempt_wakeup,
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1126
static void print_cfs_stats(struct seq_file *m, int cpu)
1127 1128 1129
{
	struct cfs_rq *cfs_rq;

1130
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1131
		print_cfs_rq(m, cpu, cfs_rq);
1132 1133
}
#endif