sched_fair.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410
	return __sched_period(nr_running);
}

411 412 413 414 415
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
416 417
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
418
{
419
	unsigned long delta_exec_weighted;
420

421
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422 423

	curr->sum_exec_runtime += delta_exec;
424
	schedstat_add(cfs_rq, exec_clock, delta_exec);
425
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
426
	curr->vruntime += delta_exec_weighted;
427 428
}

429
static void update_curr(struct cfs_rq *cfs_rq)
430
{
431
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
432
	u64 now = rq_of(cfs_rq)->clock;
433 434 435 436 437 438 439 440 441 442
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
443
	delta_exec = (unsigned long)(now - curr->exec_start);
444

I
Ingo Molnar 已提交
445 446
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
447 448 449 450 451 452

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
453 454 455
}

static inline void
456
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
457
{
458
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
459 460 461 462 463
}

/*
 * Task is being enqueued - update stats:
 */
464
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
465 466 467 468 469
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
470
	if (se != cfs_rq->curr)
471
		update_stats_wait_start(cfs_rq, se);
472 473 474
}

static void
475
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
476
{
477 478
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
479 480 481
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
482
	schedstat_set(se->wait_start, 0);
483 484 485
}

static inline void
486
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
492
	if (se != cfs_rq->curr)
493
		update_stats_wait_end(cfs_rq, se);
494 495 496 497 498 499
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
500
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 502 503 504
{
	/*
	 * We are starting a new run period:
	 */
505
	se->exec_start = rq_of(cfs_rq)->clock;
506 507 508 509 510 511
}

/**************************************************
 * Scheduling class queueing methods:
 */

512 513 514 515 516 517 518 519 520 521 522 523 524
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

525 526 527 528
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
529 530 531 532
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
533 534
	cfs_rq->nr_running++;
	se->on_rq = 1;
535
	list_add(&se->group_node, &cfs_rq->tasks);
536 537 538 539 540 541
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
542 543 544 545
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
546 547
	cfs_rq->nr_running--;
	se->on_rq = 0;
548
	list_del_init(&se->group_node);
549 550
}

551
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 553 554
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
555
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
556
		struct task_struct *tsk = task_of(se);
557 558 559 560 561 562 563 564 565

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
566 567

		account_scheduler_latency(tsk, delta >> 10, 1);
568 569
	}
	if (se->block_start) {
570
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
571
		struct task_struct *tsk = task_of(se);
572 573 574 575 576 577 578 579 580

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
581 582 583 584 585 586 587

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
588

I
Ingo Molnar 已提交
589 590 591
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
592
		account_scheduler_latency(tsk, delta >> 10, 0);
593 594 595 596
	}
#endif
}

P
Peter Zijlstra 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

610 611 612
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
613
	u64 vruntime;
614

P
Peter Zijlstra 已提交
615 616 617 618 619
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
620

621 622 623 624 625 626
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
627
	if (initial && sched_feat(START_DEBIT))
628
		vruntime += sched_vslice_add(cfs_rq, se);
629

I
Ingo Molnar 已提交
630
	if (!initial) {
631
		/* sleeps upto a single latency don't count. */
632 633 634 635 636 637 638 639 640 641 642
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
643

644 645
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
646 647
	}

P
Peter Zijlstra 已提交
648
	se->vruntime = vruntime;
649 650
}

651
static void
652
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
653 654
{
	/*
655
	 * Update run-time statistics of the 'current'.
656
	 */
657
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
658
	account_entity_enqueue(cfs_rq, se);
659

I
Ingo Molnar 已提交
660
	if (wakeup) {
661
		place_entity(cfs_rq, se, 0);
662
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
663
	}
664

665
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
666
	check_spread(cfs_rq, se);
667 668
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
669 670 671
}

static void
672
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
673
{
674 675 676 677 678
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

679
	update_stats_dequeue(cfs_rq, se);
680
	if (sleep) {
P
Peter Zijlstra 已提交
681
#ifdef CONFIG_SCHEDSTATS
682 683 684 685
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
686
				se->sleep_start = rq_of(cfs_rq)->clock;
687
			if (tsk->state & TASK_UNINTERRUPTIBLE)
688
				se->block_start = rq_of(cfs_rq)->clock;
689
		}
690
#endif
P
Peter Zijlstra 已提交
691 692
	}

693
	if (se != cfs_rq->curr)
694 695
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
696 697 698 699 700
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
701
static void
I
Ingo Molnar 已提交
702
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
703
{
704 705
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
706
	ideal_runtime = sched_slice(cfs_rq, curr);
707
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
708
	if (delta_exec > ideal_runtime)
709 710 711
		resched_task(rq_of(cfs_rq)->curr);
}

712
static void
713
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
714
{
715 716 717 718 719 720 721 722 723 724 725
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

726
	update_stats_curr_start(cfs_rq, se);
727
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
728 729 730 731 732 733
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
734
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
735 736 737 738
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
739
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
740 741
}

742 743 744
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
745 746
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
747

748 749
	if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
		cfs_rq->pair_start = rq->clock;
750
		return se;
751
	}
752 753 754 755

	return cfs_rq->next;
}

756
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
757
{
D
Dmitry Adamushko 已提交
758
	struct sched_entity *se = NULL;
759

D
Dmitry Adamushko 已提交
760 761
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
762
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
763 764
		set_next_entity(cfs_rq, se);
	}
765 766 767 768

	return se;
}

769
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
770 771 772 773 774 775
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
776
		update_curr(cfs_rq);
777

P
Peter Zijlstra 已提交
778
	check_spread(cfs_rq, prev);
779
	if (prev->on_rq) {
780
		update_stats_wait_start(cfs_rq, prev);
781 782 783
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
784
	cfs_rq->curr = NULL;
785 786
}

P
Peter Zijlstra 已提交
787 788
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
789 790
{
	/*
791
	 * Update run-time statistics of the 'current'.
792
	 */
793
	update_curr(cfs_rq);
794

P
Peter Zijlstra 已提交
795 796 797 798 799
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
800 801 802 803
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
804 805 806 807 808 809 810 811
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

812
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
813
		check_preempt_tick(cfs_rq, curr);
814 815 816 817 818 819
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
843
		if (rq->curr != p)
844
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
845

846
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
847 848
	}
}
849
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
850 851 852 853 854 855
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

856 857 858 859 860
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
861
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
862 863
{
	struct cfs_rq *cfs_rq;
864
	struct sched_entity *se = &p->se;
865 866

	for_each_sched_entity(se) {
867
		if (se->on_rq)
868 869
			break;
		cfs_rq = cfs_rq_of(se);
870
		enqueue_entity(cfs_rq, se, wakeup);
871
		wakeup = 1;
872
	}
P
Peter Zijlstra 已提交
873 874

	hrtick_start_fair(rq, rq->curr);
875 876 877 878 879 880 881
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
882
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
883 884
{
	struct cfs_rq *cfs_rq;
885
	struct sched_entity *se = &p->se;
886 887 888

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
889
		dequeue_entity(cfs_rq, se, sleep);
890
		/* Don't dequeue parent if it has other entities besides us */
891
		if (cfs_rq->load.weight)
892
			break;
893
		sleep = 1;
894
	}
P
Peter Zijlstra 已提交
895 896

	hrtick_start_fair(rq, rq->curr);
897 898 899
}

/*
900 901 902
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
903
 */
904
static void yield_task_fair(struct rq *rq)
905
{
906 907 908
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
909 910

	/*
911 912 913 914 915
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

916
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
917
		update_rq_clock(rq);
918
		/*
919
		 * Update run-time statistics of the 'current'.
920
		 */
D
Dmitry Adamushko 已提交
921
		update_curr(cfs_rq);
922 923 924 925 926

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
927
	 */
D
Dmitry Adamushko 已提交
928
	rightmost = __pick_last_entity(cfs_rq);
929 930 931
	/*
	 * Already in the rightmost position?
	 */
932
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
933 934 935 936
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
937 938
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
939
	 */
940
	se->vruntime = rightmost->vruntime + 1;
941 942
}

943 944 945 946 947
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
948 949
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
969
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
970 971 972
		return cpu;

	for_each_domain(cpu, sd) {
973 974 975
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
976
			cpus_and(tmp, sd->span, p->cpus_allowed);
977
			cpus_and(tmp, tmp, cpu_active_map);
978
			for_each_cpu_mask_nr(i, tmp) {
979 980 981 982 983 984 985 986 987 988 989 990 991 992
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
993
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
994 995 996 997 998 999 1000
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1001

I
Ingo Molnar 已提交
1002 1003
static const struct sched_class fair_sched_class;

1004
#ifdef CONFIG_FAIR_GROUP_SCHED
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1026 1027
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1028
{
P
Peter Zijlstra 已提交
1029
	struct sched_entity *se = tg->se[cpu];
1030 1031 1032 1033

	if (!tg->parent)
		return wl;

1034 1035 1036 1037 1038 1039 1040
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1041
	for_each_sched_entity(se) {
1042
		long S, rw, s, a, b;
1043 1044 1045 1046 1047 1048 1049 1050 1051
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1052 1053 1054

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1055
		rw = se->my_q->rq_weight;
1056

1057 1058
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1059

1060 1061 1062 1063 1064
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1065 1066 1067 1068 1069 1070 1071
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1072 1073
		wg = 0;
	}
1074

P
Peter Zijlstra 已提交
1075
	return wl;
1076
}
P
Peter Zijlstra 已提交
1077

1078
#else
P
Peter Zijlstra 已提交
1079

1080 1081
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1082
{
1083
	return wl;
1084
}
P
Peter Zijlstra 已提交
1085

1086 1087
#endif

1088
static int
I
Ingo Molnar 已提交
1089 1090 1091
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1092 1093
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1094
	struct task_struct *curr = this_rq->curr;
1095
	struct task_group *tg;
1096 1097
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1098
	unsigned long weight;
1099
	int balanced;
1100

1101
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1102 1103
		return 0;

1104 1105 1106 1107 1108
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1109 1110 1111 1112 1113 1114 1115
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1116

1117 1118
	tg = task_group(p);
	weight = p->se.load.weight;
1119

1120 1121
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1122

1123
	/*
I
Ingo Molnar 已提交
1124 1125 1126
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1127
	 */
1128
	if (sync && balanced) {
I
Ingo Molnar 已提交
1129
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1130
		    p->se.avg_overlap < sysctl_sched_migration_cost)
I
Ingo Molnar 已提交
1131 1132
			return 1;
	}
1133 1134 1135 1136

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1137
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1138
			balanced) {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1152 1153 1154
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1155
	int prev_cpu, this_cpu, new_cpu;
1156
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1157
	struct rq *rq, *this_rq;
1158 1159
	unsigned int imbalance;
	int idx;
1160

1161 1162 1163
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1164
	this_rq		= cpu_rq(this_cpu);
1165
	new_cpu		= prev_cpu;
1166

1167 1168 1169 1170
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1171
	for_each_domain(this_cpu, sd) {
1172
		if (cpu_isset(prev_cpu, sd->span)) {
1173 1174 1175 1176 1177 1178
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1179
		goto out;
1180 1181 1182 1183

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1184
	if (!this_sd)
1185
		goto out;
1186

1187 1188 1189 1190
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1191
	load = source_load(prev_cpu, idx);
1192 1193
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1194 1195 1196 1197 1198
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1199
		goto out;
1200 1201 1202 1203 1204 1205 1206 1207 1208

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1209
			return this_cpu;
1210 1211 1212
		}
	}

1213
out:
1214 1215 1216 1217
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1218 1219 1220 1221 1222
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1223 1224
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1225
	 */
P
Peter Zijlstra 已提交
1226
	if (sched_feat(ASYM_GRAN))
P
Peter Zijlstra 已提交
1227
		gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1228 1229 1230 1231

	return gran;
}

1232 1233 1234
/*
 * Preempt the current task with a newly woken task if needed:
 */
1235
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1236 1237
{
	struct task_struct *curr = rq->curr;
1238
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1239
	struct sched_entity *se = &curr->se, *pse = &p->se;
P
Peter Zijlstra 已提交
1240
	s64 delta_exec;
1241 1242

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1243
		update_rq_clock(rq);
1244
		update_curr(cfs_rq);
1245 1246 1247
		resched_task(curr);
		return;
	}
1248

I
Ingo Molnar 已提交
1249 1250 1251
	if (unlikely(se == pse))
		return;

1252 1253 1254 1255 1256 1257 1258
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1259 1260
	cfs_rq_of(pse)->next = pse;

1261 1262 1263 1264 1265 1266
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1267

1268 1269
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1270

1271 1272 1273 1274 1275 1276 1277
	if (sched_feat(WAKEUP_OVERLAP) && sync &&
			se->avg_overlap < sysctl_sched_migration_cost &&
			pse->avg_overlap < sysctl_sched_migration_cost) {
		resched_task(curr);
		return;
	}

P
Peter Zijlstra 已提交
1278 1279
	delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
	if (delta_exec > wakeup_gran(pse))
1280
		resched_task(curr);
1281 1282
}

1283
static struct task_struct *pick_next_task_fair(struct rq *rq)
1284
{
P
Peter Zijlstra 已提交
1285
	struct task_struct *p;
1286 1287 1288 1289 1290 1291 1292
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1293
		se = pick_next_entity(cfs_rq);
1294 1295 1296
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1297 1298 1299 1300
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1301 1302 1303 1304 1305
}

/*
 * Account for a descheduled task:
 */
1306
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1307 1308 1309 1310 1311 1312
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1313
		put_prev_entity(cfs_rq, se);
1314 1315 1316
	}
}

1317
#ifdef CONFIG_SMP
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1329
static struct task_struct *
1330
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1331
{
D
Dhaval Giani 已提交
1332 1333
	struct task_struct *p = NULL;
	struct sched_entity *se;
1334

1335 1336 1337 1338 1339
	if (next == &cfs_rq->tasks)
		return NULL;

	/* Skip over entities that are not tasks */
	do {
1340 1341
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
1342
	} while (next != &cfs_rq->tasks && !entity_is_task(se));
D
Dhaval Giani 已提交
1343

1344
	if (next == &cfs_rq->tasks && !entity_is_task(se))
1345
		return NULL;
1346 1347

	cfs_rq->balance_iterator = next;
1348 1349 1350 1351

	if (entity_is_task(se))
		p = task_of(se);

1352 1353 1354 1355 1356 1357 1358
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1359
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1360 1361 1362 1363 1364 1365
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1366
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1367 1368
}

1369 1370 1371 1372 1373
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1374
{
1375
	struct rq_iterator cfs_rq_iterator;
1376

1377 1378 1379
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1380

1381 1382 1383
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1384 1385
}

1386
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1387
static unsigned long
1388
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389
		  unsigned long max_load_move,
1390 1391
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1392 1393
{
	long rem_load_move = max_load_move;
1394 1395
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1396

1397
	rcu_read_lock();
1398
	update_h_load(busiest_cpu);
1399

1400
	list_for_each_entry_rcu(tg, &task_groups, list) {
1401
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1402 1403
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1404
		u64 rem_load, moved_load;
1405

1406 1407 1408
		/*
		 * empty group
		 */
1409
		if (!busiest_cfs_rq->task_weight)
1410 1411
			continue;

S
Srivatsa Vaddagiri 已提交
1412 1413
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1414

1415
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1416
				rem_load, sd, idle, all_pinned, this_best_prio,
1417
				tg->cfs_rq[busiest_cpu]);
1418

1419
		if (!moved_load)
1420 1421
			continue;

1422
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1423
		moved_load = div_u64(moved_load, busiest_weight + 1);
1424

1425 1426
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1427 1428
			break;
	}
1429
	rcu_read_unlock();
1430

P
Peter Williams 已提交
1431
	return max_load_move - rem_load_move;
1432
}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1469
#endif /* CONFIG_SMP */
1470

1471 1472 1473
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1474
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1475 1476 1477 1478 1479 1480
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1481
		entity_tick(cfs_rq, se, queued);
1482 1483 1484
	}
}

1485
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1486

1487 1488 1489 1490 1491 1492 1493
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1494
static void task_new_fair(struct rq *rq, struct task_struct *p)
1495 1496
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1497
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1498
	int this_cpu = smp_processor_id();
1499 1500 1501

	sched_info_queued(p);

1502
	update_curr(cfs_rq);
1503
	place_entity(cfs_rq, se, 1);
1504

1505
	/* 'curr' will be NULL if the child belongs to a different group */
1506
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1507
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1508
		/*
1509 1510 1511
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1512
		swap(curr->vruntime, se->vruntime);
1513
		resched_task(rq->curr);
1514
	}
1515

1516
	enqueue_task_fair(rq, p, 0);
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1535
		check_preempt_curr(rq, p, 0);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1552
		check_preempt_curr(rq, p, 0);
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1578 1579 1580
/*
 * All the scheduling class methods:
 */
1581 1582
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1583 1584 1585
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1586 1587 1588
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1589

I
Ingo Molnar 已提交
1590
	.check_preempt_curr	= check_preempt_wakeup,
1591 1592 1593 1594

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1595
#ifdef CONFIG_SMP
1596
	.load_balance		= load_balance_fair,
1597
	.move_one_task		= move_one_task_fair,
1598
#endif
1599

1600
	.set_curr_task          = set_curr_task_fair,
1601 1602
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1603 1604 1605

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1606 1607 1608 1609

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1610 1611 1612
};

#ifdef CONFIG_SCHED_DEBUG
1613
static void print_cfs_stats(struct seq_file *m, int cpu)
1614 1615 1616
{
	struct cfs_rq *cfs_rq;

1617
	rcu_read_lock();
1618
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1619
		print_cfs_rq(m, cpu, cfs_rq);
1620
	rcu_read_unlock();
1621 1622
}
#endif