sched_fair.c 105.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
A
Arjan van de Ven 已提交
25

26
/*
27
 * Targeted preemption latency for CPU-bound tasks:
28
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37
 */
38 39
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

53
/*
54
 * Minimal preemption granularity for CPU-bound tasks:
55
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56
 */
57 58
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59 60

/*
61 62
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
63
static unsigned int sched_nr_latency = 8;
64 65

/*
66
 * After fork, child runs first. If set to 0 (default) then
67
 * parent will (try to) run first.
68
 */
69
unsigned int sysctl_sched_child_runs_first __read_mostly;
70

71 72 73 74 75 76 77 78
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

79 80
/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93 94 95 96 97 98
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

99 100
static const struct sched_class fair_sched_class;

101 102 103 104
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

105
#ifdef CONFIG_FAIR_GROUP_SCHED
106

107
/* cpu runqueue to which this cfs_rq is attached */
108 109
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
110
	return cfs_rq->rq;
111 112
}

113 114
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
115

116 117 118 119 120 121 122 123
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

153 154 155
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
156 157 158 159 160 161 162 163 164 165 166 167
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
169
		}
170 171 172 173 174 175 176 177 178 179 180 181 182

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

245 246 247 248 249 250
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
251

252 253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
255 256 257 258
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
259 260
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
261

P
Peter Zijlstra 已提交
262
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263
{
P
Peter Zijlstra 已提交
264
	return &task_rq(p)->cfs;
265 266
}

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

286 287 288 289 290 291 292 293
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

308 309 310 311 312
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
313 314
#endif	/* CONFIG_FAIR_GROUP_SCHED */

315 316 317 318 319

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

320
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
321
{
322 323
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
324 325 326 327 328
		min_vruntime = vruntime;

	return min_vruntime;
}

329
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
330 331 332 333 334 335 336 337
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

338 339 340 341 342 343
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

344
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
345
{
346
	return se->vruntime - cfs_rq->min_vruntime;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
361
		if (!cfs_rq->curr)
362 363 364 365 366 367 368 369
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

370 371 372
/*
 * Enqueue an entity into the rb-tree:
 */
373
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 375 376 377
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
378
	s64 key = entity_key(cfs_rq, se);
379 380 381 382 383 384 385 386 387 388 389 390
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
391
		if (key < entity_key(cfs_rq, entry)) {
392 393 394 395 396 397 398 399 400 401 402
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
403
	if (leftmost)
I
Ingo Molnar 已提交
404
		cfs_rq->rb_leftmost = &se->run_node;
405 406 407 408 409

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

410
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
411
{
P
Peter Zijlstra 已提交
412 413 414 415 416 417
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
418

419 420 421 422 423
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
424 425 426 427 428 429
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
430 431
}

432
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
433
{
434
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
435

436 437
	if (!last)
		return NULL;
438 439

	return rb_entry(last, struct sched_entity, run_node);
440 441
}

442 443 444 445
/**************************************************************
 * Scheduling class statistics methods:
 */

446
#ifdef CONFIG_SCHED_DEBUG
447
int sched_proc_update_handler(struct ctl_table *table, int write,
448
		void __user *buffer, size_t *lenp,
449 450
		loff_t *ppos)
{
451
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452
	int factor = get_update_sysctl_factor();
453 454 455 456 457 458 459

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

460 461 462 463 464 465 466
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

467 468 469
	return 0;
}
#endif
470

471
/*
472
 * delta /= w
473 474 475 476
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
477 478
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
479 480 481 482

	return delta;
}

483 484 485 486 487 488 489 490
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
491 492 493
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
494
	unsigned long nr_latency = sched_nr_latency;
495 496

	if (unlikely(nr_running > nr_latency)) {
497
		period = sysctl_sched_min_granularity;
498 499 500 501 502 503
		period *= nr_running;
	}

	return period;
}

504 505 506 507
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
508
 * s = p*P[w/rw]
509
 */
P
Peter Zijlstra 已提交
510
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
511
{
M
Mike Galbraith 已提交
512
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
513

M
Mike Galbraith 已提交
514
	for_each_sched_entity(se) {
L
Lin Ming 已提交
515
		struct load_weight *load;
516
		struct load_weight lw;
L
Lin Ming 已提交
517 518 519

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
520

M
Mike Galbraith 已提交
521
		if (unlikely(!se->on_rq)) {
522
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
523 524 525 526 527 528 529

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
530 531
}

532
/*
533
 * We calculate the vruntime slice of a to be inserted task
534
 *
535
 * vs = s/w
536
 */
537
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
538
{
539
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
540 541
}

542 543 544
static void update_cfs_load(struct cfs_rq *cfs_rq);
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);

545 546 547 548 549
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
550 551
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
552
{
553
	unsigned long delta_exec_weighted;
554

555 556
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
557 558

	curr->sum_exec_runtime += delta_exec;
559
	schedstat_add(cfs_rq, exec_clock, delta_exec);
560
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
561

I
Ingo Molnar 已提交
562
	curr->vruntime += delta_exec_weighted;
563
	update_min_vruntime(cfs_rq);
564 565 566 567 568 569 570 571

#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->load_unacc_exec_time += delta_exec;
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq);
		update_cfs_shares(cfs_rq, 0);
	}
#endif
572 573
}

574
static void update_curr(struct cfs_rq *cfs_rq)
575
{
576
	struct sched_entity *curr = cfs_rq->curr;
577
	u64 now = rq_of(cfs_rq)->clock_task;
578 579 580 581 582 583 584 585 586 587
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
588
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
589 590
	if (!delta_exec)
		return;
591

I
Ingo Molnar 已提交
592 593
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
594 595 596 597

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

598
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599
		cpuacct_charge(curtask, delta_exec);
600
		account_group_exec_runtime(curtask, delta_exec);
601
	}
602 603 604
}

static inline void
605
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
606
{
607
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
608 609 610 611 612
}

/*
 * Task is being enqueued - update stats:
 */
613
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 615 616 617 618
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
619
	if (se != cfs_rq->curr)
620
		update_stats_wait_start(cfs_rq, se);
621 622 623
}

static void
624
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
625
{
626 627 628 629 630
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
631 632 633
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
634
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
635 636
	}
#endif
637
	schedstat_set(se->statistics.wait_start, 0);
638 639 640
}

static inline void
641
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 643 644 645 646
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
647
	if (se != cfs_rq->curr)
648
		update_stats_wait_end(cfs_rq, se);
649 650 651 652 653 654
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
655
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
656 657 658 659
{
	/*
	 * We are starting a new run period:
	 */
660
	se->exec_start = rq_of(cfs_rq)->clock_task;
661 662 663 664 665 666
}

/**************************************************
 * Scheduling class queueing methods:
 */

667 668 669 670 671 672 673 674 675 676 677 678 679
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

680 681 682 683
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
684 685
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
686
	if (entity_is_task(se)) {
687
		add_cfs_task_weight(cfs_rq, se->load.weight);
688 689
		list_add(&se->group_node, &cfs_rq->tasks);
	}
690 691 692 693 694 695 696
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
697 698
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
699
	if (entity_is_task(se)) {
700
		add_cfs_task_weight(cfs_rq, -se->load.weight);
701 702
		list_del_init(&se->group_node);
	}
703 704 705
	cfs_rq->nr_running--;
}

P
Peter Zijlstra 已提交
706
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
707
static void update_cfs_load(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
708
{
709
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
710
	u64 now, delta;
711
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
712 713 714 715 716 717 718

	if (!cfs_rq)
		return;

	now = rq_of(cfs_rq)->clock;
	delta = now - cfs_rq->load_stamp;

719 720 721 722 723 724 725
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
	}

P
Peter Zijlstra 已提交
726
	cfs_rq->load_stamp = now;
727
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
728
	cfs_rq->load_period += delta;
729 730 731 732
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
733 734 735 736 737 738 739 740 741 742 743

	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
744

745 746
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
	if (se->on_rq)
		account_entity_dequeue(cfs_rq, se);

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

761
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
P
Peter Zijlstra 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
{
	struct task_group *tg;
	struct sched_entity *se;
	long load_weight, load, shares;

	if (!cfs_rq)
		return;

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
	if (!se)
		return;

775
	load = cfs_rq->load.weight + weight_delta;
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	load_weight = atomic_read(&tg->load_weight);
	load_weight -= cfs_rq->load_contribution;
	load_weight += load;

	shares = (tg->shares * load);
	if (load_weight)
		shares /= load_weight;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
793
static inline void update_cfs_load(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
794 795 796
{
}

797
static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
P
Peter Zijlstra 已提交
798 799 800 801
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

802
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
803 804
{
#ifdef CONFIG_SCHEDSTATS
805 806 807 808 809
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

810 811
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
812 813 814 815

		if ((s64)delta < 0)
			delta = 0;

816 817
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
818

819 820
		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
821

822
		if (tsk) {
823
			account_scheduler_latency(tsk, delta >> 10, 1);
824 825
			trace_sched_stat_sleep(tsk, delta);
		}
826
	}
827 828
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
829 830 831 832

		if ((s64)delta < 0)
			delta = 0;

833 834
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
835

836 837
		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
838

839
		if (tsk) {
840
			if (tsk->in_iowait) {
841 842
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
843
				trace_sched_stat_iowait(tsk, delta);
844 845
			}

846 847 848 849 850 851 852 853 854 855 856
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
857
		}
858 859 860 861
	}
#endif
}

P
Peter Zijlstra 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

875 876 877
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
878
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
879

880 881 882 883 884 885
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
886
	if (initial && sched_feat(START_DEBIT))
887
		vruntime += sched_vslice(cfs_rq, se);
888

889
	/* sleeps up to a single latency don't count. */
890
	if (!initial) {
891
		unsigned long thresh = sysctl_sched_latency;
892

893 894 895 896 897 898
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
899

900
		vruntime -= thresh;
901 902
	}

903 904 905
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
906
	se->vruntime = vruntime;
907 908
}

909
static void
910
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
911
{
912 913 914 915
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
916
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
917 918
		se->vruntime += cfs_rq->min_vruntime;

919
	/*
920
	 * Update run-time statistics of the 'current'.
921
	 */
922
	update_curr(cfs_rq);
923
	update_cfs_load(cfs_rq);
924
	update_cfs_shares(cfs_rq, se->load.weight);
P
Peter Zijlstra 已提交
925
	account_entity_enqueue(cfs_rq, se);
926

927
	if (flags & ENQUEUE_WAKEUP) {
928
		place_entity(cfs_rq, se, 0);
929
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
930
	}
931

932
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
933
	check_spread(cfs_rq, se);
934 935
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
936
	se->on_rq = 1;
937 938 939

	if (cfs_rq->nr_running == 1)
		list_add_leaf_cfs_rq(cfs_rq);
940 941
}

P
Peter Zijlstra 已提交
942
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
943
{
944
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
945 946
		cfs_rq->last = NULL;

947
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
948 949 950
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
951 952 953 954 955 956
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

957
static void
958
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
959
{
960 961 962 963 964
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

965
	update_stats_dequeue(cfs_rq, se);
966
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
967
#ifdef CONFIG_SCHEDSTATS
968 969 970 971
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
972
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
973
			if (tsk->state & TASK_UNINTERRUPTIBLE)
974
				se->statistics.block_start = rq_of(cfs_rq)->clock;
975
		}
976
#endif
P
Peter Zijlstra 已提交
977 978
	}

P
Peter Zijlstra 已提交
979
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
980

981
	if (se != cfs_rq->curr)
982
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
983
	se->on_rq = 0;
984
	update_cfs_load(cfs_rq);
985
	account_entity_dequeue(cfs_rq, se);
986
	update_min_vruntime(cfs_rq);
987
	update_cfs_shares(cfs_rq, 0);
988 989 990 991 992 993

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
994
	if (!(flags & DEQUEUE_SLEEP))
995
		se->vruntime -= cfs_rq->min_vruntime;
996 997 998 999 1000
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1001
static void
I
Ingo Molnar 已提交
1002
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1003
{
1004 1005
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
1006
	ideal_runtime = sched_slice(cfs_rq, curr);
1007
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1008
	if (delta_exec > ideal_runtime) {
1009
		resched_task(rq_of(cfs_rq)->curr);
1010 1011 1012 1013 1014
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
1035
	}
1036 1037
}

1038
static void
1039
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1040
{
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1052
	update_stats_curr_start(cfs_rq, se);
1053
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1054 1055 1056 1057 1058 1059
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1060
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1061
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1062 1063 1064
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1065
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1066 1067
}

1068 1069 1070
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1071
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1072
{
1073
	struct sched_entity *se = __pick_next_entity(cfs_rq);
1074
	struct sched_entity *left = se;
1075

1076 1077
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
1078

1079 1080 1081 1082 1083 1084 1085
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1086 1087

	return se;
1088 1089
}

1090
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1091 1092 1093 1094 1095 1096
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1097
		update_curr(cfs_rq);
1098

P
Peter Zijlstra 已提交
1099
	check_spread(cfs_rq, prev);
1100
	if (prev->on_rq) {
1101
		update_stats_wait_start(cfs_rq, prev);
1102 1103 1104
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1105
	cfs_rq->curr = NULL;
1106 1107
}

P
Peter Zijlstra 已提交
1108 1109
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1110 1111
{
	/*
1112
	 * Update run-time statistics of the 'current'.
1113
	 */
1114
	update_curr(cfs_rq);
1115

P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1121 1122 1123 1124
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

1133
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
1134
		check_preempt_tick(cfs_rq, curr);
1135 1136 1137 1138 1139 1140
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
1164
		if (rq->curr != p)
1165
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1166

1167
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1168 1169
	}
}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1186
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1187 1188 1189 1190
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1191 1192 1193 1194

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1195 1196
#endif

1197 1198 1199 1200 1201
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1202
static void
1203
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1204 1205
{
	struct cfs_rq *cfs_rq;
1206
	struct sched_entity *se = &p->se;
1207 1208

	for_each_sched_entity(se) {
1209
		if (se->on_rq)
1210 1211
			break;
		cfs_rq = cfs_rq_of(se);
1212 1213
		enqueue_entity(cfs_rq, se, flags);
		flags = ENQUEUE_WAKEUP;
1214
	}
P
Peter Zijlstra 已提交
1215

P
Peter Zijlstra 已提交
1216 1217 1218
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

1219
		update_cfs_load(cfs_rq);
1220
		update_cfs_shares(cfs_rq, 0);
P
Peter Zijlstra 已提交
1221 1222
	}

1223
	hrtick_update(rq);
1224 1225 1226 1227 1228 1229 1230
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1231
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1232 1233
{
	struct cfs_rq *cfs_rq;
1234
	struct sched_entity *se = &p->se;
1235 1236 1237

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1238
		dequeue_entity(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
1239

1240
		/* Don't dequeue parent if it has other entities besides us */
1241
		if (cfs_rq->load.weight)
1242
			break;
1243
		flags |= DEQUEUE_SLEEP;
1244
	}
P
Peter Zijlstra 已提交
1245

P
Peter Zijlstra 已提交
1246 1247 1248
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

1249
		update_cfs_load(cfs_rq);
1250
		update_cfs_shares(cfs_rq, 0);
P
Peter Zijlstra 已提交
1251 1252
	}

1253
	hrtick_update(rq);
1254 1255 1256
}

/*
1257 1258 1259
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1260
 */
1261
static void yield_task_fair(struct rq *rq)
1262
{
1263 1264 1265
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1266 1267

	/*
1268 1269 1270 1271 1272
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1273 1274
	clear_buddies(cfs_rq, se);

1275
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1276
		update_rq_clock(rq);
1277
		/*
1278
		 * Update run-time statistics of the 'current'.
1279
		 */
D
Dmitry Adamushko 已提交
1280
		update_curr(cfs_rq);
1281 1282 1283 1284 1285

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1286
	 */
D
Dmitry Adamushko 已提交
1287
	rightmost = __pick_last_entity(cfs_rq);
1288 1289 1290
	/*
	 * Already in the rightmost position?
	 */
1291
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1292 1293 1294 1295
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1296 1297
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1298
	 */
1299
	se->vruntime = rightmost->vruntime + 1;
1300 1301
}

1302
#ifdef CONFIG_SMP
1303

1304 1305 1306 1307 1308 1309 1310 1311
static void task_waking_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	se->vruntime -= cfs_rq->min_vruntime;
}

1312
#ifdef CONFIG_FAIR_GROUP_SCHED
1313 1314 1315 1316 1317 1318 1319
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 */
P
Peter Zijlstra 已提交
1320
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1321
{
P
Peter Zijlstra 已提交
1322
	struct sched_entity *se = tg->se[cpu];
1323 1324 1325 1326

	if (!tg->parent)
		return wl;

P
Peter Zijlstra 已提交
1327
	for_each_sched_entity(se) {
1328
		long S, rw, s, a, b;
P
Peter Zijlstra 已提交
1329 1330

		S = se->my_q->tg->shares;
P
Peter Zijlstra 已提交
1331 1332
		s = se->load.weight;
		rw = se->my_q->load.weight;
1333

1334 1335
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1336

1337 1338 1339 1340 1341
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1342 1343 1344 1345 1346 1347 1348
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1349 1350
		wg = 0;
	}
1351

P
Peter Zijlstra 已提交
1352
	return wl;
1353
}
P
Peter Zijlstra 已提交
1354

1355
#else
P
Peter Zijlstra 已提交
1356

1357 1358
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1359
{
1360
	return wl;
1361
}
P
Peter Zijlstra 已提交
1362

1363 1364
#endif

1365
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1366
{
1367 1368
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1369
	unsigned long tl_per_task;
1370
	struct task_group *tg;
1371
	unsigned long weight;
1372
	int balanced;
1373

1374 1375 1376 1377 1378
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1379

1380 1381 1382 1383 1384
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1385
	rcu_read_lock();
1386 1387 1388 1389
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1390
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1391 1392
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1393

1394 1395
	tg = task_group(p);
	weight = p->se.load.weight;
1396

1397 1398
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1399 1400 1401
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1402 1403 1404 1405
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (this_load) {
		unsigned long this_eff_load, prev_eff_load;

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
1421
	rcu_read_unlock();
1422

1423
	/*
I
Ingo Molnar 已提交
1424 1425 1426
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1427
	 */
1428 1429
	if (sync && balanced)
		return 1;
1430

1431
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1432 1433
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1434 1435 1436
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1437 1438 1439 1440 1441
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1442
		schedstat_inc(sd, ttwu_move_affine);
1443
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1444 1445 1446 1447 1448 1449

		return 1;
	}
	return 0;
}

1450 1451 1452 1453 1454
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1455
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1456
		  int this_cpu, int load_idx)
1457
{
1458
	struct sched_group *idlest = NULL, *group = sd->groups;
1459 1460
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1461

1462 1463 1464 1465
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1521 1522 1523
		}
	}

1524 1525
	return idlest;
}
1526

1527 1528 1529
/*
 * Try and locate an idle CPU in the sched_domain.
 */
1530
static int select_idle_sibling(struct task_struct *p, int target)
1531 1532 1533
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
1534
	struct sched_domain *sd;
1535 1536 1537
	int i;

	/*
1538 1539
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
1540
	 */
1541 1542 1543 1544 1545 1546 1547 1548
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
1549
		return prev_cpu;
1550 1551

	/*
1552
	 * Otherwise, iterate the domains and find an elegible idle cpu.
1553
	 */
1554 1555
	for_each_domain(target, sd) {
		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1556
			break;
1557 1558 1559 1560 1561 1562

		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
			if (idle_cpu(i)) {
				target = i;
				break;
			}
1563
		}
1564 1565 1566 1567 1568 1569 1570 1571

		/*
		 * Lets stop looking for an idle sibling when we reached
		 * the domain that spans the current cpu and prev_cpu.
		 */
		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
			break;
1572 1573 1574 1575 1576
	}

	return target;
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1588 1589
static int
select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1590
{
1591
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1592 1593 1594
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
1595
	int want_affine = 0;
1596
	int want_sd = 1;
1597
	int sync = wake_flags & WF_SYNC;
1598

1599
	if (sd_flag & SD_BALANCE_WAKE) {
1600
		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1601 1602 1603
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1604 1605

	for_each_domain(cpu, tmp) {
1606 1607 1608
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

1609
		/*
1610 1611
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1612
		 */
P
Peter Zijlstra 已提交
1613
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1626 1627 1628 1629
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1630
				want_sd = 0;
1631
		}
1632

1633
		/*
1634 1635
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
1636
		 */
1637 1638 1639 1640
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
			want_affine = 0;
1641 1642
		}

1643 1644 1645
		if (!want_sd && !want_affine)
			break;

1646
		if (!(tmp->flags & sd_flag))
1647 1648
			continue;

1649 1650 1651 1652
		if (want_sd)
			sd = tmp;
	}

1653
	if (affine_sd) {
1654 1655 1656 1657
		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
			return select_idle_sibling(p, cpu);
		else
			return select_idle_sibling(p, prev_cpu);
1658
	}
1659

1660
	while (sd) {
1661
		int load_idx = sd->forkexec_idx;
1662
		struct sched_group *group;
1663
		int weight;
1664

1665
		if (!(sd->flags & sd_flag)) {
1666 1667 1668
			sd = sd->child;
			continue;
		}
1669

1670 1671
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1672

1673
		group = find_idlest_group(sd, p, cpu, load_idx);
1674 1675 1676 1677
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1678

1679
		new_cpu = find_idlest_cpu(group, p, cpu);
1680 1681 1682 1683
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1684
		}
1685 1686 1687

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
1688
		weight = sd->span_weight;
1689 1690
		sd = NULL;
		for_each_domain(cpu, tmp) {
1691
			if (weight <= tmp->span_weight)
1692
				break;
1693
			if (tmp->flags & sd_flag)
1694 1695 1696
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1697 1698
	}

1699
	return new_cpu;
1700 1701 1702
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1703 1704
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1705 1706 1707 1708
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
1709 1710
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
1720
	 */
M
Mike Galbraith 已提交
1721 1722
	if (unlikely(se->load.weight != NICE_0_LOAD))
		gran = calc_delta_fair(gran, se);
1723 1724 1725 1726

	return gran;
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1749
	gran = wakeup_gran(curr, se);
1750 1751 1752 1753 1754 1755
	if (vdiff > gran)
		return 1;

	return 0;
}

1756 1757
static void set_last_buddy(struct sched_entity *se)
{
1758 1759 1760 1761
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1762 1763 1764 1765
}

static void set_next_buddy(struct sched_entity *se)
{
1766 1767 1768 1769
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1770 1771
}

1772 1773 1774
/*
 * Preempt the current task with a newly woken task if needed:
 */
1775
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1776 1777
{
	struct task_struct *curr = rq->curr;
1778
	struct sched_entity *se = &curr->se, *pse = &p->se;
1779
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1780
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1781

1782 1783
	if (unlikely(rt_prio(p->prio)))
		goto preempt;
1784

P
Peter Zijlstra 已提交
1785 1786 1787
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1788 1789 1790
	if (unlikely(se == pse))
		return;

1791
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1792
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1793

1794 1795 1796 1797 1798 1799 1800
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1801
	/*
1802
	 * Batch and idle tasks do not preempt (their preemption is driven by
1803 1804
	 * the tick):
	 */
1805
	if (unlikely(p->policy != SCHED_NORMAL))
1806
		return;
1807

1808
	/* Idle tasks are by definition preempted by everybody. */
1809 1810
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1811

1812 1813 1814
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1815
	update_curr(cfs_rq);
1816
	find_matching_se(&se, &pse);
1817
	BUG_ON(!pse);
1818 1819
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1820

1821
	return;
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1839 1840
}

1841
static struct task_struct *pick_next_task_fair(struct rq *rq)
1842
{
P
Peter Zijlstra 已提交
1843
	struct task_struct *p;
1844 1845 1846
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1847
	if (!cfs_rq->nr_running)
1848 1849 1850
		return NULL;

	do {
1851
		se = pick_next_entity(cfs_rq);
1852
		set_next_entity(cfs_rq, se);
1853 1854 1855
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1856 1857 1858 1859
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1860 1861 1862 1863 1864
}

/*
 * Account for a descheduled task:
 */
1865
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1866 1867 1868 1869 1870 1871
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1872
		put_prev_entity(cfs_rq, se);
1873 1874 1875
	}
}

1876
#ifdef CONFIG_SMP
1877 1878 1879 1880
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
{
	deactivate_task(src_rq, p, 0);
	set_task_cpu(p, this_cpu);
	activate_task(this_rq, p, 0);
	check_preempt_curr(this_rq, p, 0);
1892 1893 1894 1895

	/* re-arm NEWIDLE balancing when moving tasks */
	src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
	this_rq->idle_stamp = 0;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
		     struct sched_domain *sd, enum cpu_idle_type idle,
		     int *all_pinned)
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1914
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1915 1916 1917 1918 1919
		return 0;
	}
	*all_pinned = 0;

	if (task_running(rq, p)) {
1920
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1921 1922 1923 1924 1925 1926 1927 1928 1929
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

1930
	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1931 1932 1933 1934 1935
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(sd, lb_hot_gained[idle]);
1936
			schedstat_inc(p, se.statistics.nr_forced_migrations);
1937 1938 1939 1940 1941 1942
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
1943
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1944 1945 1946 1947 1948
		return 0;
	}
	return 1;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct task_struct *p, *n;
	struct cfs_rq *cfs_rq;
	int pinned = 0;

	for_each_leaf_cfs_rq(busiest, cfs_rq) {
		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {

			if (!can_migrate_task(p, busiest, this_cpu,
						sd, idle, &pinned))
				continue;

			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);
			return 1;
		}
	}

	return 0;
}

1985 1986 1987 1988
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
1989
	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1990 1991 1992
{
	int loops = 0, pulled = 0, pinned = 0;
	long rem_load_move = max_load_move;
1993
	struct task_struct *p, *n;
1994 1995 1996 1997 1998 1999

	if (max_load_move == 0)
		goto out;

	pinned = 1;

2000 2001 2002
	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
		if (loops++ > sysctl_sched_nr_migrate)
			break;
2003

2004 2005 2006
		if ((p->se.load.weight >> 1) > rem_load_move ||
		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
			continue;
2007

2008 2009 2010
		pull_task(busiest, p, this_rq, this_cpu);
		pulled++;
		rem_load_move -= p->se.load.weight;
2011 2012

#ifdef CONFIG_PREEMPT
2013 2014 2015 2016 2017 2018 2019
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE)
			break;
2020 2021
#endif

2022 2023 2024 2025 2026 2027 2028
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (rem_load_move <= 0)
			break;

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
	}
out:
	/*
	 * Right now, this is one of only two places pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);

	if (all_pinned)
		*all_pinned = pinned;

	return max_load_move - rem_load_move;
}

P
Peter Zijlstra 已提交
2046
#ifdef CONFIG_FAIR_GROUP_SCHED
2047 2048 2049
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
2050
static int update_shares_cpu(struct task_group *tg, int cpu)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;
	long load_avg;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
2066
	update_cfs_load(cfs_rq);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;
	atomic_add(load_avg, &tg->load_weight);
	cfs_rq->load_contribution += load_avg;

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
2077
	update_cfs_shares(cfs_rq, 0);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
2090 2091
	for_each_leaf_cfs_rq(rq, cfs_rq)
		update_shares_cpu(cfs_rq->tg, cpu);
2092 2093 2094
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	long rem_load_move = max_load_move;
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;

	rcu_read_lock();
	update_h_load(busiest_cpu);

	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
		u64 rem_load, moved_load;

		/*
		 * empty group
		 */
		if (!busiest_cfs_rq->task_weight)
			continue;

		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);

		moved_load = balance_tasks(this_rq, this_cpu, busiest,
				rem_load, sd, idle, all_pinned, this_best_prio,
				busiest_cfs_rq);

		if (!moved_load)
			continue;

		moved_load *= busiest_h_load;
		moved_load = div_u64(moved_load, busiest_weight + 1);

		rem_load_move -= moved_load;
		if (rem_load_move < 0)
			break;
	}
	rcu_read_unlock();

	return max_load_move - rem_load_move;
}
#else
2142 2143 2144 2145
static inline void update_shares(int cpu)
{
}

P
Peter Zijlstra 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/*
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2170
	unsigned long total_load_moved = 0, load_moved;
2171 2172 2173
	int this_best_prio = this_rq->curr->prio;

	do {
2174
		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2175 2176
				max_load_move - total_load_moved,
				sd, idle, all_pinned, &this_best_prio);
2177 2178

		total_load_moved += load_moved;
2179 2180 2181 2182 2183 2184 2185 2186 2187

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
2188 2189 2190 2191

		if (raw_spin_is_contended(&this_rq->lock) ||
				raw_spin_is_contended(&busiest->lock))
			break;
2192
#endif
2193
	} while (load_moved && max_load_move > total_load_moved);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	return total_load_moved > 0;
}

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
2214
	unsigned long this_has_capacity;
2215 2216 2217 2218 2219

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
2220
	unsigned long busiest_group_capacity;
2221
	unsigned long busiest_has_capacity;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
2244
	int group_has_capacity; /* Is there extra capacity in the group? */
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
};

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}


#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
2436
	unsigned long weight = sd->span_weight;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
2455 2456 2457 2458 2459 2460 2461

	if (unlikely(total < rq->rt_avg)) {
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
		available = total - rq->rt_avg;
	}
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
2473
	unsigned long weight = sd->span_weight;
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

		power >>= SCHED_LOAD_SHIFT;
	}

2486 2487 2488 2489 2490 2491 2492 2493 2494
	sdg->cpu_power_orig = power;

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

	power >>= SCHED_LOAD_SHIFT;

2495 2496 2497 2498 2499 2500
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;

2501
	cpu_rq(cpu)->cpu_power = power;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	sdg->cpu_power = power;
}

static void update_group_power(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

	group = child->groups;
	do {
		power += group->cpu_power;
		group = group->next;
	} while (group != child->groups);

	sdg->cpu_power = power;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
	 */
	if (sd->level != SD_LV_SIBLING)
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
M
Michael Neuling 已提交
2546
	if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2547 2548 2549 2550 2551
		return 1;

	return 0;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: The sched_domain whose statistics are to be updated.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
2571
	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2572 2573
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2574
	unsigned long avg_load_per_task = 0;
2575

2576
	if (local_group)
2577 2578 2579 2580 2581
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
2582
	max_nr_running = 0;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
2600
			if (load > max_cpu_load) {
2601
				max_cpu_load = load;
2602 2603
				max_nr_running = rq->nr_running;
			}
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
2620 2621 2622 2623 2624 2625
	if (idle != CPU_NEWLY_IDLE && local_group) {
		if (balance_cpu != this_cpu) {
			*balance = 0;
			return;
		}
		update_group_power(sd, this_cpu);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
2640 2641
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2642

2643
	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2644 2645
		sgs->group_imb = 1;

2646
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2647 2648
	if (!sgs->group_capacity)
		sgs->group_capacity = fix_small_capacity(sd, group);
2649 2650 2651

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
2652 2653
}

2654 2655 2656 2657 2658
/**
 * update_sd_pick_busiest - return 1 on busiest group
 * @sd: sched_domain whose statistics are to be checked
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
2659 2660
 * @sgs: sched_group statistics
 * @this_cpu: the current cpu
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
static bool update_sd_pick_busiest(struct sched_domain *sd,
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
				   struct sg_lb_stats *sgs,
				   int this_cpu)
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    this_cpu < group_first_cpu(sg)) {
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

2697 2698 2699 2700 2701
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
2702
 * @sd_idle: Idle status of the sched_domain containing sg.
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
{
	struct sched_domain *child = sd->child;
2713
	struct sched_group *sg = sd->groups;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

	init_sd_power_savings_stats(sd, sds, idle);
	load_idx = get_sd_load_idx(sd, idle);

	do {
		int local_group;

2726
		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2727
		memset(&sgs, 0, sizeof(sgs));
2728
		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2729 2730
				local_group, cpus, balance, &sgs);

P
Peter Zijlstra 已提交
2731
		if (local_group && !(*balance))
2732 2733 2734
			return;

		sds->total_load += sgs.group_load;
2735
		sds->total_pwr += sg->cpu_power;
2736 2737 2738

		/*
		 * In case the child domain prefers tasks go to siblings
2739
		 * first, lower the sg capacity to one so that we'll try
2740 2741 2742 2743 2744 2745
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
2746
		 */
2747
		if (prefer_sibling && !local_group && sds->this_has_capacity)
2748 2749 2750 2751
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
2752
			sds->this = sg;
2753 2754
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
2755
			sds->this_has_capacity = sgs.group_has_capacity;
2756
		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2757
			sds->max_load = sgs.avg_load;
2758
			sds->busiest = sg;
2759
			sds->busiest_nr_running = sgs.sum_nr_running;
2760
			sds->busiest_group_capacity = sgs.group_capacity;
2761
			sds->busiest_load_per_task = sgs.sum_weighted_load;
2762
			sds->busiest_has_capacity = sgs.group_has_capacity;
2763 2764 2765
			sds->group_imb = sgs.group_imb;
		}

2766 2767 2768 2769 2770
		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
		sg = sg->next;
	} while (sg != sd->groups);
}

M
Michael Neuling 已提交
2771
int __weak arch_sd_sibling_asym_packing(void)
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
{
       return 0*SD_ASYM_PACKING;
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
2793 2794 2795
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
 * @sd: The sched_domain whose packing is to be checked.
 * @sds: Statistics of the sched_domain which is to be packed
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: returns amount of imbalanced due to packing.
 */
static int check_asym_packing(struct sched_domain *sd,
			      struct sd_lb_stats *sds,
			      int this_cpu, unsigned long *imbalance)
{
	int busiest_cpu;

	if (!(sd->flags & SD_ASYM_PACKING))
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
	if (this_cpu > busiest_cpu)
		return 0;

	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
				       SCHED_LOAD_SCALE);
	return 1;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
2835
	unsigned long scaled_busy_load_per_task;
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

2846 2847 2848 2849 2850 2851
	scaled_busy_load_per_task = sds->busiest_load_per_task
						 * SCHED_LOAD_SCALE;
	scaled_busy_load_per_task /= sds->busiest->cpu_power;

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
	else
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
2902 2903 2904 2905 2906 2907 2908 2909
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);

		load_above_capacity /= sds->busiest->cpu_power;
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
3011 3012 3013 3014 3015
	 *
	 * Note: when doing newidle balance, if the local group has excess
	 * capacity (i.e. nr_running < group_capacity) and the busiest group
	 * does not have any capacity, we force a load balance to pull tasks
	 * to the local group. In this case, we skip past checks 3, 4 and 5.
3016
	 */
P
Peter Zijlstra 已提交
3017
	if (!(*balance))
3018 3019
		goto ret;

3020 3021 3022 3023
	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(sd, &sds, this_cpu, imbalance))
		return sds.busiest;

3024 3025 3026
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

3027 3028 3029 3030 3031
	/*  SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
			!sds.busiest_has_capacity)
		goto force_balance;

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;

	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
		goto out_balanced;

3043
force_balance:
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
	return sds.busiest;

out_balanced:
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
ret:
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
static struct rq *
3064 3065 3066
find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
		   enum cpu_idle_type idle, unsigned long imbalance,
		   const struct cpumask *cpus)
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
		unsigned long wl;

3077 3078 3079
		if (!capacity)
			capacity = fix_small_capacity(sd, group);

3080 3081 3082 3083
		if (!cpumask_test_cpu(i, cpus))
			continue;

		rq = cpu_rq(i);
3084
		wl = weighted_cpuload(i);
3085

3086 3087 3088 3089
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
3090 3091 3092
		if (capacity && rq->nr_running == 1 && wl > imbalance)
			continue;

3093 3094 3095 3096 3097 3098 3099 3100
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
		wl = (wl * SCHED_LOAD_SCALE) / power;

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

3119 3120
static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
			       int busiest_cpu, int this_cpu)
3121 3122
{
	if (idle == CPU_NEWLY_IDLE) {
3123 3124 3125 3126 3127 3128 3129 3130 3131

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
			return 1;

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package.
		 *
		 * The package power saving logic comes from
		 * find_busiest_group(). If there are no imbalance, then
		 * f_b_g() will return NULL. However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
			return 0;

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return 0;
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

3162 3163
static int active_load_balance_cpu_stop(void *data);

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
	struct sched_group *group;
	unsigned long imbalance;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

	cpumask_copy(cpus, cpu_active_mask);

	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
	 * portraying it as CPU_NOT_IDLE.
	 */
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		sd_idle = 1;

	schedstat_inc(sd, lb_count[idle]);

redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
				   cpus, balance);

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3205
	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == this_rq);

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
		local_irq_save(flags);
		double_rq_lock(this_rq, busiest);
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
				      imbalance, sd, idle, &all_pinned);
		double_rq_unlock(this_rq, busiest);
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
		if (ld_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(all_pinned)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
				goto redo;
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
3247 3248 3249 3250 3251 3252 3253 3254
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
3255

3256 3257
		if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
					this_cpu)) {
3258 3259
			raw_spin_lock_irqsave(&busiest->lock, flags);

3260 3261 3262
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
3263 3264 3265 3266 3267 3268 3269 3270 3271
			 */
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				all_pinned = 1;
				goto out_one_pinned;
			}

3272 3273 3274 3275 3276
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
3277 3278 3279 3280 3281 3282
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
3283

3284
			if (active_balance)
3285 3286 3287
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static void idle_balance(int this_cpu, struct rq *this_rq)
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

3353 3354 3355 3356 3357
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
3358
	update_shares(this_cpu);
3359 3360
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
3361
		int balance = 1;
3362 3363 3364 3365

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

3366
		if (sd->flags & SD_BALANCE_NEWIDLE) {
3367
			/* If we've pulled tasks over stop searching: */
3368 3369 3370
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
3371 3372 3373 3374

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3375
		if (pulled_task)
3376 3377
			break;
	}
3378 3379 3380

	raw_spin_lock(&this_rq->lock);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
3391 3392 3393 3394
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
3395
 */
3396
static int active_load_balance_cpu_stop(void *data)
3397
{
3398 3399
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
3400
	int target_cpu = busiest_rq->push_cpu;
3401
	struct rq *target_rq = cpu_rq(target_cpu);
3402
	struct sched_domain *sd;
3403 3404 3405 3406 3407 3408 3409

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
3410 3411 3412

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
3413
		goto out_unlock;
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		schedstat_inc(sd, alb_count);

		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
	double_unlock_balance(busiest_rq, target_rq);
3442 3443 3444 3445
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
3446 3447 3448
}

#ifdef CONFIG_NO_HZ
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);

static void trigger_sched_softirq(void *data)
{
	raise_softirq_irqoff(SCHED_SOFTIRQ);
}

static inline void init_sched_softirq_csd(struct call_single_data *csd)
{
	csd->func = trigger_sched_softirq;
	csd->info = NULL;
	csd->flags = 0;
	csd->priv = 0;
}

/*
 * idle load balancing details
 * - One of the idle CPUs nominates itself as idle load_balancer, while
 *   entering idle.
 * - This idle load balancer CPU will also go into tickless mode when
 *   it is idle, just like all other idle CPUs
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
3475 3476
static struct {
	atomic_t load_balancer;
3477 3478 3479 3480 3481 3482
	atomic_t first_pick_cpu;
	atomic_t second_pick_cpu;
	cpumask_var_t idle_cpus_mask;
	cpumask_var_t grp_idle_mask;
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
3536
	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3537 3538 3539 3540 3541 3542
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
3543
	if (cpumask_empty(nohz.grp_idle_mask))
3544 3545
		return 0;

3546
	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
3579
	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3580 3581 3582 3583 3584 3585 3586
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
3587
				return cpumask_first(nohz.grp_idle_mask);
3588 3589 3590 3591 3592 3593 3594

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
3595
	return nr_cpu_ids;
3596 3597 3598 3599
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
3600
	return nr_cpu_ids;
3601 3602 3603
}
#endif

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = get_nohz_load_balancer();

	if (ilb_cpu >= nr_cpu_ids) {
		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
		if (ilb_cpu >= nr_cpu_ids)
			return;
	}

	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
		struct call_single_data *cp;

		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
		cp = &per_cpu(remote_sched_softirq_cb, cpu);
		__smp_call_function_single(ilb_cpu, cp, 0);
	}
	return;
}

3633 3634 3635
/*
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3636
 * load balancing on behalf of all those cpus.
3637
 *
3638 3639 3640
 * When the ilb owner becomes busy, we will not have new ilb owner until some
 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
 * idle load balancing by kicking one of the idle CPUs.
3641
 *
3642 3643 3644
 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
 * ilb owner CPU in future (when there is a need for idle load balancing on
 * behalf of all idle CPUs).
3645
 */
3646
void select_nohz_load_balancer(int stop_tick)
3647 3648 3649 3650 3651 3652
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
3653
				return;
3654 3655 3656 3657 3658

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3659 3660
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3661 3662
				BUG();

3663
			return;
3664 3665
		}

3666
		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3667

3668 3669 3670 3671
		if (atomic_read(&nohz.first_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
		if (atomic_read(&nohz.second_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3672

3673
		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3674 3675
			int new_ilb;

3676 3677 3678 3679 3680
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
					   cpu) != nr_cpu_ids)
				return;

3681 3682 3683 3684 3685 3686
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3687
				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3688
				resched_cpu(new_ilb);
3689
				return;
3690
			}
3691
			return;
3692 3693
		}
	} else {
3694 3695
		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
			return;
3696

3697
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3698 3699

		if (atomic_read(&nohz.load_balancer) == cpu)
3700 3701
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3702 3703
				BUG();
	}
3704
	return;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
3727 3728
	update_shares(cpu);

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

3788
#ifdef CONFIG_NO_HZ
3789
/*
3790
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3791 3792
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
		return;

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu)
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched()) {
			this_rq->nohz_balance_kick = 0;
			break;
		}

		raw_spin_lock_irq(&this_rq->lock);
3817
		update_rq_clock(this_rq);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		update_cpu_load(this_rq);
		raw_spin_unlock_irq(&this_rq->lock);

		rebalance_domains(balance_cpu, CPU_IDLE);

		rq = cpu_rq(balance_cpu);
		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
	this_rq->nohz_balance_kick = 0;
}

/*
 * Current heuristic for kicking the idle load balancer
 * - first_pick_cpu is the one of the busy CPUs. It will kick
 *   idle load balancer when it has more than one process active. This
 *   eliminates the need for idle load balancing altogether when we have
 *   only one running process in the system (common case).
 * - If there are more than one busy CPU, idle load balancer may have
 *   to run for active_load_balance to happen (i.e., two busy CPUs are
 *   SMT or core siblings and can run better if they move to different
 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
 *   which will kick idle load balancer as soon as it has any load.
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
	int ret;
	int first_pick_cpu, second_pick_cpu;

	if (time_before(now, nohz.next_balance))
		return 0;

S
Suresh Siddha 已提交
3852
	if (rq->idle_at_tick)
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		return 0;

	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);

	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
		return 0;

	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
	if (ret == nr_cpu_ids || ret == cpu) {
		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
		if (rq->nr_running > 1)
			return 1;
	} else {
		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
		if (ret == nr_cpu_ids || ret == cpu) {
			if (rq->nr_running)
				return 1;
		}
	}
	return 0;
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
3894
	 * If this cpu has a pending nohz_balance_kick, then do the
3895 3896 3897
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
3898
	nohz_idle_balance(this_cpu, idle);
3899 3900 3901 3902
}

static inline int on_null_domain(int cpu)
{
3903
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
3915 3916 3917 3918
#ifdef CONFIG_NO_HZ
	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
		nohz_balancer_kick(cpu);
#endif
3919 3920
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

3931 3932 3933 3934 3935 3936 3937 3938 3939
#else	/* CONFIG_SMP */

/*
 * on UP we do not need to balance between CPUs:
 */
static inline void idle_balance(int cpu, struct rq *rq)
{
}

3940
#endif /* CONFIG_SMP */
3941

3942 3943 3944
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
3945
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3946 3947 3948 3949 3950 3951
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
3952
		entity_tick(cfs_rq, se, queued);
3953 3954 3955 3956
	}
}

/*
P
Peter Zijlstra 已提交
3957 3958 3959
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
3960
 */
P
Peter Zijlstra 已提交
3961
static void task_fork_fair(struct task_struct *p)
3962
{
P
Peter Zijlstra 已提交
3963
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
3964
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3965
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
3966 3967 3968
	struct rq *rq = this_rq();
	unsigned long flags;

3969
	raw_spin_lock_irqsave(&rq->lock, flags);
3970

3971 3972
	update_rq_clock(rq);

3973 3974
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
3975
		__set_task_cpu(p, this_cpu);
3976 3977
		rcu_read_unlock();
	}
3978

3979
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
3980

3981 3982
	if (curr)
		se->vruntime = curr->vruntime;
3983
	place_entity(cfs_rq, se, 1);
3984

P
Peter Zijlstra 已提交
3985
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
3986
		/*
3987 3988 3989
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
3990
		swap(curr->vruntime, se->vruntime);
3991
		resched_task(rq->curr);
3992
	}
3993

3994 3995
	se->vruntime -= cfs_rq->min_vruntime;

3996
	raw_spin_unlock_irqrestore(&rq->lock, flags);
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
4015
		check_preempt_curr(rq, p, 0);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
4032
		check_preempt_curr(rq, p, 0);
4033 4034
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
4048
#ifdef CONFIG_FAIR_GROUP_SCHED
4049
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
4050
{
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
4067
	if (!on_rq)
4068
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
4069 4070 4071
}
#endif

4072
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

4087 4088 4089
/*
 * All the scheduling class methods:
 */
4090 4091
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
4092 4093 4094 4095
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
4096
	.check_preempt_curr	= check_preempt_wakeup,
4097 4098 4099 4100

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

4101
#ifdef CONFIG_SMP
L
Li Zefan 已提交
4102 4103
	.select_task_rq		= select_task_rq_fair,

4104 4105
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
4106 4107

	.task_waking		= task_waking_fair,
4108
#endif
4109

4110
	.set_curr_task          = set_curr_task_fair,
4111
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
4112
	.task_fork		= task_fork_fair,
4113 4114 4115

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
4116

4117 4118
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
4119
#ifdef CONFIG_FAIR_GROUP_SCHED
4120
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
4121
#endif
4122 4123 4124
};

#ifdef CONFIG_SCHED_DEBUG
4125
static void print_cfs_stats(struct seq_file *m, int cpu)
4126 4127 4128
{
	struct cfs_rq *cfs_rq;

4129
	rcu_read_lock();
4130
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4131
		print_cfs_rq(m, cpu, cfs_rq);
4132
	rcu_read_unlock();
4133 4134
}
#endif