hugetlb.c 93.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36 37

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
38
unsigned long hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51
/*
52 53
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
54
 */
55
DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
139
	return subpool_inode(file_inode(vma->vm_file));
140 141
}

142 143 144
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
145
 *
146 147
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
148 149 150 151 152 153 154
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

155
static long region_add(struct resv_map *resv, long f, long t)
156
{
157
	struct list_head *head = &resv->regions;
158 159
	struct file_region *rg, *nrg, *trg;

160
	spin_lock(&resv->lock);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
190
	spin_unlock(&resv->lock);
191 192 193
	return 0;
}

194
static long region_chg(struct resv_map *resv, long f, long t)
195
{
196
	struct list_head *head = &resv->regions;
197
	struct file_region *rg, *nrg = NULL;
198 199
	long chg = 0;

200 201
retry:
	spin_lock(&resv->lock);
202 203 204 205 206 207 208 209 210
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
211 212 213 214 215 216 217 218 219 220 221
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
222

223 224 225
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
226 227 228 229 230 231 232 233 234 235 236 237
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
238
			goto out;
239

L
Lucas De Marchi 已提交
240
		/* We overlap with this area, if it extends further than
241 242 243 244 245 246 247 248
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
249 250 251 252 253 254 255 256

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
257 258 259
	return chg;
}

260
static long region_truncate(struct resv_map *resv, long end)
261
{
262
	struct list_head *head = &resv->regions;
263 264 265
	struct file_region *rg, *trg;
	long chg = 0;

266
	spin_lock(&resv->lock);
267 268 269 270 271
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
272
		goto out;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
289 290 291

out:
	spin_unlock(&resv->lock);
292 293 294
	return chg;
}

295
static long region_count(struct resv_map *resv, long f, long t)
296
{
297
	struct list_head *head = &resv->regions;
298 299 300
	struct file_region *rg;
	long chg = 0;

301
	spin_lock(&resv->lock);
302 303
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
304 305
		long seg_from;
		long seg_to;
306 307 308 309 310 311 312 313 314 315 316

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
317
	spin_unlock(&resv->lock);
318 319 320 321

	return chg;
}

322 323 324 325
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
326 327
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
328
{
329 330
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
331 332
}

333 334 335 336 337 338
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

352
	return 1UL << huge_page_shift(hstate);
353
}
354
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355

356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

369 370 371 372 373 374 375
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
376
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377

378 379 380 381 382 383 384 385 386
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
387 388 389 390 391 392 393 394 395
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
396
 */
397 398 399 400 401 402 403 404 405 406 407
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

408
struct resv_map *resv_map_alloc(void)
409 410 411 412 413 414
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
415
	spin_lock_init(&resv_map->lock);
416 417 418 419 420
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

421
void resv_map_release(struct kref *ref)
422 423 424 425
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
426
	region_truncate(resv_map, 0);
427 428 429
	kfree(resv_map);
}

430 431 432 433 434
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

435
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 437
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
438 439 440 441 442 443 444
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
445 446
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
447
	}
448 449
}

450
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 452
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
453
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454

455 456
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
457 458 459 460 461
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463 464

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 466 467 468 469
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
470 471

	return (get_vma_private_data(vma) & flag) != 0;
472 473
}

474
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 476 477
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
478
	if (!(vma->vm_flags & VM_MAYSHARE))
479 480 481 482
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
483
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484
{
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
500 501

	/* Shared mappings always use reserves */
502
	if (vma->vm_flags & VM_MAYSHARE)
503
		return 1;
504 505 506 507 508

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
509 510
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
511

512
	return 0;
513 514
}

515
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
516 517
{
	int nid = page_to_nid(page);
518
	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 520
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
521 522
}

523 524 525 526
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

527 528 529 530 531 532 533 534
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
535
		return NULL;
536
	list_move(&page->lru, &h->hugepage_activelist);
537
	set_page_refcounted(page);
538 539 540 541 542
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

543 544 545 546 547 548 549 550 551
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

552 553
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
554 555
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
556
{
557
	struct page *page = NULL;
558
	struct mempolicy *mpol;
559
	nodemask_t *nodemask;
560
	struct zonelist *zonelist;
561 562
	struct zone *zone;
	struct zoneref *z;
563
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
564

565 566 567 568 569
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
570
	if (!vma_has_reserves(vma, chg) &&
571
			h->free_huge_pages - h->resv_huge_pages == 0)
572
		goto err;
573

574
	/* If reserves cannot be used, ensure enough pages are in the pool */
575
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576
		goto err;
577

578
retry_cpuset:
579
	cpuset_mems_cookie = read_mems_allowed_begin();
580
	zonelist = huge_zonelist(vma, address,
581
					htlb_alloc_mask(h), &mpol, &nodemask);
582

583 584
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
585
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 587
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
588 589 590 591 592
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

593
				SetPagePrivate(page);
594
				h->resv_huge_pages--;
595 596
				break;
			}
A
Andrew Morton 已提交
597
		}
L
Linus Torvalds 已提交
598
	}
599

600
	mpol_cond_put(mpol);
601
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602
		goto retry_cpuset;
L
Linus Torvalds 已提交
603
	return page;
604 605 606

err:
	return NULL;
L
Linus Torvalds 已提交
607 608
}

609
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
610 611
{
	int i;
612

613 614
	VM_BUG_ON(h->order >= MAX_ORDER);

615 616 617
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
618 619 620 621
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
622
	}
623
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
624 625
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
626
	arch_release_hugepage(page);
627
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
628 629
}

630 631 632 633 634 635 636 637 638 639 640
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

641 642
static void free_huge_page(struct page *page)
{
643 644 645 646
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
647
	struct hstate *h = page_hstate(page);
648
	int nid = page_to_nid(page);
649 650
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
651
	bool restore_reserve;
652

653
	set_page_private(page, 0);
654
	page->mapping = NULL;
655
	BUG_ON(page_count(page));
656
	BUG_ON(page_mapcount(page));
657
	restore_reserve = PagePrivate(page);
658
	ClearPagePrivate(page);
659 660

	spin_lock(&hugetlb_lock);
661 662
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
663 664 665
	if (restore_reserve)
		h->resv_huge_pages++;

666
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
667 668
		/* remove the page from active list */
		list_del(&page->lru);
669 670 671
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
672
	} else {
673
		arch_clear_hugepage_flags(page);
674
		enqueue_huge_page(h, page);
675
	}
676
	spin_unlock(&hugetlb_lock);
677
	hugepage_subpool_put_pages(spool, 1);
678 679
}

680
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
681
{
682
	INIT_LIST_HEAD(&page->lru);
683 684
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
685
	set_hugetlb_cgroup(page, NULL);
686 687
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
688 689 690 691
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

692 693 694 695 696 697 698 699 700
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
701
	__ClearPageReserved(page);
702 703
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
704 705 706 707 708 709 710 711 712 713 714 715 716
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
717
		set_page_count(p, 0);
718 719 720 721
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
722 723 724 725 726
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
727 728 729 730 731 732
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
733
	return get_compound_page_dtor(page) == free_huge_page;
734
}
735 736
EXPORT_SYMBOL_GPL(PageHuge);

737 738 739 740 741 742 743 744 745
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

746
	return get_compound_page_dtor(page_head) == free_huge_page;
747 748
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

766
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
767 768
{
	struct page *page;
769

770 771 772
	if (h->order >= MAX_ORDER)
		return NULL;

773
	page = alloc_pages_exact_node(nid,
774
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
775
						__GFP_REPEAT|__GFP_NOWARN,
776
		huge_page_order(h));
L
Linus Torvalds 已提交
777
	if (page) {
778
		if (arch_prepare_hugepage(page)) {
779
			__free_pages(page, huge_page_order(h));
780
			return NULL;
781
		}
782
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
783
	}
784 785 786 787

	return page;
}

788
/*
789 790 791 792 793
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
794
 */
795
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
796
{
797
	nid = next_node(nid, *nodes_allowed);
798
	if (nid == MAX_NUMNODES)
799
		nid = first_node(*nodes_allowed);
800 801 802 803 804
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

805 806 807 808 809 810 811
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

812
/*
813 814 815 816
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
817
 */
818 819
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
820
{
821 822 823 824 825 826
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
827 828

	return nid;
829 830
}

831
/*
832 833 834 835
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
836
 */
837
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
838
{
839 840 841 842 843 844
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
845 846

	return nid;
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

883 884 885 886 887 888
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
889 890
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
891
{
892
	int nr_nodes, node;
893 894
	int ret = 0;

895
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
896 897 898 899
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
900 901
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
902
			struct page *page =
903
				list_entry(h->hugepage_freelists[node].next,
904 905 906
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
907
			h->free_huge_pages_node[node]--;
908 909
			if (acct_surplus) {
				h->surplus_huge_pages--;
910
				h->surplus_huge_pages_node[node]--;
911
			}
912 913
			update_and_free_page(h, page);
			ret = 1;
914
			break;
915
		}
916
	}
917 918 919 920

	return ret;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

959
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
960 961
{
	struct page *page;
962
	unsigned int r_nid;
963

964 965 966
	if (h->order >= MAX_ORDER)
		return NULL;

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
991
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
992 993 994
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
995 996
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
997 998 999
	}
	spin_unlock(&hugetlb_lock);

1000
	if (nid == NUMA_NO_NODE)
1001
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1002 1003 1004 1005
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1006
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1007
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1008

1009 1010
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1011
		page = NULL;
1012 1013
	}

1014
	spin_lock(&hugetlb_lock);
1015
	if (page) {
1016
		INIT_LIST_HEAD(&page->lru);
1017
		r_nid = page_to_nid(page);
1018
		set_compound_page_dtor(page, free_huge_page);
1019
		set_hugetlb_cgroup(page, NULL);
1020 1021 1022
		/*
		 * We incremented the global counters already
		 */
1023 1024
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1025
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1026
	} else {
1027 1028
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1029
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1030
	}
1031
	spin_unlock(&hugetlb_lock);
1032 1033 1034 1035

	return page;
}

1036 1037 1038 1039 1040 1041 1042
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1043
	struct page *page = NULL;
1044 1045

	spin_lock(&hugetlb_lock);
1046 1047
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1048 1049
	spin_unlock(&hugetlb_lock);

1050
	if (!page)
1051 1052 1053 1054 1055
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1056
/*
L
Lucas De Marchi 已提交
1057
 * Increase the hugetlb pool such that it can accommodate a reservation
1058 1059
 * of size 'delta'.
 */
1060
static int gather_surplus_pages(struct hstate *h, int delta)
1061 1062 1063 1064 1065
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1066
	bool alloc_ok = true;
1067

1068
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1069
	if (needed <= 0) {
1070
		h->resv_huge_pages += delta;
1071
		return 0;
1072
	}
1073 1074 1075 1076 1077 1078 1079 1080

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1081
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1082 1083 1084 1085
		if (!page) {
			alloc_ok = false;
			break;
		}
1086 1087
		list_add(&page->lru, &surplus_list);
	}
1088
	allocated += i;
1089 1090 1091 1092 1093 1094

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1095 1096
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1107 1108
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1109
	 * needed to accommodate the reservation.  Add the appropriate number
1110
	 * of pages to the hugetlb pool and free the extras back to the buddy
1111 1112 1113
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1114 1115
	 */
	needed += allocated;
1116
	h->resv_huge_pages += delta;
1117
	ret = 0;
1118

1119
	/* Free the needed pages to the hugetlb pool */
1120
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1121 1122
		if ((--needed) < 0)
			break;
1123 1124 1125 1126 1127
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1128
		VM_BUG_ON_PAGE(page_count(page), page);
1129
		enqueue_huge_page(h, page);
1130
	}
1131
free:
1132
	spin_unlock(&hugetlb_lock);
1133 1134

	/* Free unnecessary surplus pages to the buddy allocator */
1135 1136
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1137
	spin_lock(&hugetlb_lock);
1138 1139 1140 1141 1142 1143 1144 1145

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1146
 * Called with hugetlb_lock held.
1147
 */
1148 1149
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1150 1151 1152
{
	unsigned long nr_pages;

1153
	/* Uncommit the reservation */
1154
	h->resv_huge_pages -= unused_resv_pages;
1155

1156 1157 1158 1159
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1160
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1161

1162 1163
	/*
	 * We want to release as many surplus pages as possible, spread
1164 1165 1166 1167 1168
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1169 1170
	 */
	while (nr_pages--) {
1171
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1172
			break;
1173 1174 1175
	}
}

1176 1177 1178
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1179 1180 1181 1182 1183 1184
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1185
 */
1186
static long vma_needs_reservation(struct hstate *h,
1187
			struct vm_area_struct *vma, unsigned long addr)
1188
{
1189 1190 1191
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1192

1193 1194
	resv = vma_resv_map(vma);
	if (!resv)
1195
		return 1;
1196

1197 1198
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1199

1200 1201 1202 1203
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1204
}
1205 1206
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1207
{
1208 1209
	struct resv_map *resv;
	pgoff_t idx;
1210

1211 1212 1213
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1214

1215 1216
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1217 1218
}

1219
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1220
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1221
{
1222
	struct hugepage_subpool *spool = subpool_vma(vma);
1223
	struct hstate *h = hstate_vma(vma);
1224
	struct page *page;
1225
	long chg;
1226 1227
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1228

1229
	idx = hstate_index(h);
1230
	/*
1231 1232 1233 1234 1235 1236
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1237
	 */
1238
	chg = vma_needs_reservation(h, vma, addr);
1239
	if (chg < 0)
1240
		return ERR_PTR(-ENOMEM);
1241 1242
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1243
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1244

1245 1246
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1247 1248
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1249 1250
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1251
	spin_lock(&hugetlb_lock);
1252
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1253
	if (!page) {
1254
		spin_unlock(&hugetlb_lock);
1255
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1256
		if (!page) {
1257 1258 1259
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1260 1261
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1262
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1263
		}
1264 1265
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1266
		/* Fall through */
K
Ken Chen 已提交
1267
	}
1268 1269
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1270

1271
	set_page_private(page, (unsigned long)spool);
1272

1273
	vma_commit_reservation(h, vma, addr);
1274
	return page;
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1291
int __weak alloc_bootmem_huge_page(struct hstate *h)
1292 1293
{
	struct huge_bootmem_page *m;
1294
	int nr_nodes, node;
1295

1296
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1297 1298
		void *addr;

1299 1300 1301
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1302 1303 1304 1305 1306 1307 1308
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1309
			goto found;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1322 1323 1324 1325 1326 1327 1328 1329
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1330 1331 1332 1333 1334 1335 1336
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1337 1338 1339 1340
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1341 1342
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1343 1344 1345
#else
		page = virt_to_page(m);
#endif
1346
		WARN_ON(page_count(page) != 1);
1347
		prep_compound_huge_page(page, h->order);
1348
		WARN_ON(PageReserved(page));
1349
		prep_new_huge_page(h, page, page_to_nid(page));
1350 1351 1352 1353 1354 1355 1356
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1357
			adjust_managed_page_count(page, 1 << h->order);
1358 1359 1360
	}
}

1361
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1362 1363
{
	unsigned long i;
1364

1365
	for (i = 0; i < h->max_huge_pages; ++i) {
1366 1367 1368
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1369
		} else if (!alloc_fresh_huge_page(h,
1370
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1371 1372
			break;
	}
1373
	h->max_huge_pages = i;
1374 1375 1376 1377 1378 1379 1380
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1381 1382 1383
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1384 1385 1386
	}
}

A
Andi Kleen 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1398 1399 1400 1401 1402
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1403
		char buf[32];
1404
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1405 1406
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1407 1408 1409
	}
}

L
Linus Torvalds 已提交
1410
#ifdef CONFIG_HIGHMEM
1411 1412
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1413
{
1414 1415
	int i;

1416 1417 1418
	if (h->order >= MAX_ORDER)
		return;

1419
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1420
		struct page *page, *next;
1421 1422 1423
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1424
				return;
L
Linus Torvalds 已提交
1425 1426 1427
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1428
			update_and_free_page(h, page);
1429 1430
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1431 1432 1433 1434
		}
	}
}
#else
1435 1436
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1437 1438 1439 1440
{
}
#endif

1441 1442 1443 1444 1445
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1446 1447
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1448
{
1449
	int nr_nodes, node;
1450 1451 1452

	VM_BUG_ON(delta != -1 && delta != 1);

1453 1454 1455 1456
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1457
		}
1458 1459 1460 1461 1462
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1463
		}
1464 1465
	}
	return 0;
1466

1467 1468 1469 1470
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1471 1472
}

1473
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1474 1475
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1476
{
1477
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1478

1479 1480 1481
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1482 1483 1484 1485
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1486 1487 1488 1489 1490 1491
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1492
	 */
L
Linus Torvalds 已提交
1493
	spin_lock(&hugetlb_lock);
1494
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1495
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1496 1497 1498
			break;
	}

1499
	while (count > persistent_huge_pages(h)) {
1500 1501 1502 1503 1504 1505
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1506
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1507 1508 1509 1510
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1511 1512 1513
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1514 1515 1516 1517 1518 1519 1520 1521
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1522 1523 1524 1525 1526 1527 1528 1529
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1530
	 */
1531
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1532
	min_count = max(count, min_count);
1533
	try_to_free_low(h, min_count, nodes_allowed);
1534
	while (min_count < persistent_huge_pages(h)) {
1535
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1536 1537
			break;
	}
1538
	while (count < persistent_huge_pages(h)) {
1539
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1540 1541 1542
			break;
	}
out:
1543
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1544
	spin_unlock(&hugetlb_lock);
1545
	return ret;
L
Linus Torvalds 已提交
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1558 1559 1560
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1561 1562
{
	int i;
1563

1564
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1565 1566 1567
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1568
			return &hstates[i];
1569 1570 1571
		}

	return kobj_to_node_hstate(kobj, nidp);
1572 1573
}

1574
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1575 1576
					struct kobj_attribute *attr, char *buf)
{
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1588
}
1589

1590 1591 1592
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1593 1594
{
	int err;
1595
	int nid;
1596
	unsigned long count;
1597
	struct hstate *h;
1598
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1599

1600
	err = kstrtoul(buf, 10, &count);
1601
	if (err)
1602
		goto out;
1603

1604
	h = kobj_to_hstate(kobj, &nid);
1605 1606 1607 1608 1609
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1610 1611 1612 1613 1614 1615 1616
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1617
			nodes_allowed = &node_states[N_MEMORY];
1618 1619 1620 1621 1622 1623 1624 1625 1626
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1627
		nodes_allowed = &node_states[N_MEMORY];
1628

1629
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1630

1631
	if (nodes_allowed != &node_states[N_MEMORY])
1632 1633 1634
		NODEMASK_FREE(nodes_allowed);

	return len;
1635 1636 1637
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1650 1651 1652
}
HSTATE_ATTR(nr_hugepages);

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1674 1675 1676
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1677
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1678 1679
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1680

1681 1682 1683 1684 1685
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1686
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1687

1688 1689 1690
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1691
	err = kstrtoul(buf, 10, &input);
1692
	if (err)
1693
		return err;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1717 1718 1719 1720 1721 1722
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1723
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1724 1725 1726 1727 1728 1729 1730
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1742 1743 1744 1745 1746 1747 1748 1749 1750
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1751 1752 1753
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1754 1755 1756 1757 1758 1759 1760
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1761 1762 1763
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1764 1765
{
	int retval;
1766
	int hi = hstate_index(h);
1767

1768 1769
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1770 1771
		return -ENOMEM;

1772
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1773
	if (retval)
1774
		kobject_put(hstate_kobjs[hi]);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1789 1790
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1791
		if (err)
1792
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1793 1794 1795
	}
}

1796 1797 1798 1799
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1800 1801 1802
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1803 1804 1805 1806 1807 1808 1809 1810 1811
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1812
 * A subset of global hstate attributes for node devices
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1826
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1849
 * Unregister hstate attributes from a single node device.
1850 1851
 * No-op if no hstate attributes attached.
 */
1852
static void hugetlb_unregister_node(struct node *node)
1853 1854
{
	struct hstate *h;
1855
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1856 1857

	if (!nhs->hugepages_kobj)
1858
		return;		/* no hstate attributes */
1859

1860 1861 1862 1863 1864
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1865
		}
1866
	}
1867 1868 1869 1870 1871 1872

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1873
 * hugetlb module exit:  unregister hstate attributes from node devices
1874 1875 1876 1877 1878 1879 1880
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1881
	 * disable node device registrations.
1882 1883 1884 1885 1886 1887 1888
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1889
		hugetlb_unregister_node(node_devices[nid]);
1890 1891 1892
}

/*
1893
 * Register hstate attributes for a single node device.
1894 1895
 * No-op if attributes already registered.
 */
1896
static void hugetlb_register_node(struct node *node)
1897 1898
{
	struct hstate *h;
1899
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1900 1901 1902 1903 1904 1905
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1906
							&node->dev.kobj);
1907 1908 1909 1910 1911 1912 1913 1914
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1915 1916
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1917 1918 1919 1920 1921 1922 1923
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1924
 * hugetlb init time:  register hstate attributes for all registered node
1925 1926
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1927 1928 1929 1930 1931
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1932
	for_each_node_state(nid, N_MEMORY) {
1933
		struct node *node = node_devices[nid];
1934
		if (node->dev.id == nid)
1935 1936 1937 1938
			hugetlb_register_node(node);
	}

	/*
1939
	 * Let the node device driver know we're here so it can
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1961 1962 1963 1964
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1965 1966
	hugetlb_unregister_all_nodes();

1967
	for_each_hstate(h) {
1968
		kobject_put(hstate_kobjs[hstate_index(h)]);
1969 1970 1971
	}

	kobject_put(hugepages_kobj);
1972
	kfree(htlb_fault_mutex_table);
1973 1974 1975 1976 1977
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1978 1979
	int i;

1980 1981 1982 1983 1984 1985
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1986

1987 1988 1989 1990
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991
	}
1992
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993 1994
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1995 1996

	hugetlb_init_hstates();
1997
	gather_bootmem_prealloc();
1998 1999 2000
	report_hugepages();

	hugetlb_sysfs_init();
2001
	hugetlb_register_all_nodes();
2002
	hugetlb_cgroup_file_init();
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2015 2016 2017 2018 2019 2020 2021 2022
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2023 2024
	unsigned long i;

2025
	if (size_to_hstate(PAGE_SIZE << order)) {
2026
		pr_warning("hugepagesz= specified twice, ignoring\n");
2027 2028
		return;
	}
2029
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030
	BUG_ON(order == 0);
2031
	h = &hstates[hugetlb_max_hstate++];
2032 2033
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034 2035 2036 2037
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038
	INIT_LIST_HEAD(&h->hugepage_activelist);
2039 2040
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041 2042
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2043

2044 2045 2046
	parsed_hstate = h;
}

2047
static int __init hugetlb_nrpages_setup(char *s)
2048 2049
{
	unsigned long *mhp;
2050
	static unsigned long *last_mhp;
2051 2052

	/*
2053
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054 2055
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2056
	if (!hugetlb_max_hstate)
2057 2058 2059 2060
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2061
	if (mhp == last_mhp) {
2062 2063
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2064 2065 2066
		return 1;
	}

2067 2068 2069
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2070 2071 2072 2073 2074
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2075
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076 2077 2078 2079
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2080 2081
	return 1;
}
2082 2083 2084 2085 2086 2087 2088 2089
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2103 2104 2105
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2106
{
2107 2108
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2109
	int ret;
2110

2111
	tmp = h->max_huge_pages;
2112

2113 2114 2115
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2116 2117
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2118 2119 2120
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2121

2122
	if (write) {
2123 2124
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2125 2126 2127
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2128
			nodes_allowed = &node_states[N_MEMORY];
2129 2130 2131
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2132
		if (nodes_allowed != &node_states[N_MEMORY])
2133 2134
			NODEMASK_FREE(nodes_allowed);
	}
2135 2136
out:
	return ret;
L
Linus Torvalds 已提交
2137
}
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2156
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2157
			void __user *buffer,
2158 2159
			size_t *length, loff_t *ppos)
{
2160
	struct hstate *h = &default_hstate;
2161
	unsigned long tmp;
2162
	int ret;
2163

2164
	tmp = h->nr_overcommit_huge_pages;
2165

2166 2167 2168
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2169 2170
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2171 2172 2173
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2174 2175 2176 2177 2178 2179

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2180 2181
out:
	return ret;
2182 2183
}

L
Linus Torvalds 已提交
2184 2185
#endif /* CONFIG_SYSCTL */

2186
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2187
{
2188
	struct hstate *h = &default_hstate;
2189
	seq_printf(m,
2190 2191 2192 2193 2194
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2195 2196 2197 2198 2199
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2200 2201 2202 2203
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2204
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2205 2206
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2207 2208
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2209 2210 2211
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2229 2230 2231
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2232 2233 2234 2235 2236 2237
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2238 2239
}

2240
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2263
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2264 2265
			goto out;

2266 2267
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2268 2269 2270 2271 2272 2273
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2274
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2275 2276 2277 2278 2279 2280

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2281 2282
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2283
	struct resv_map *resv = vma_resv_map(vma);
2284 2285 2286 2287 2288

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2289
	 * has a reference to the reservation map it cannot disappear until
2290 2291 2292
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2293
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2294
		kref_get(&resv->refs);
2295 2296
}

2297 2298
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2299
	struct hstate *h = hstate_vma(vma);
2300
	struct resv_map *resv = vma_resv_map(vma);
2301
	struct hugepage_subpool *spool = subpool_vma(vma);
2302
	unsigned long reserve, start, end;
2303

2304 2305
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2306

2307 2308
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2309

2310
	reserve = (end - start) - region_count(resv, start, end);
2311

2312 2313 2314 2315 2316
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		hugetlb_acct_memory(h, -reserve);
		hugepage_subpool_put_pages(spool, reserve);
2317
	}
2318 2319
}

L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2326
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2327 2328
{
	BUG();
N
Nick Piggin 已提交
2329
	return 0;
L
Linus Torvalds 已提交
2330 2331
}

2332
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2333
	.fault = hugetlb_vm_op_fault,
2334
	.open = hugetlb_vm_op_open,
2335
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2336 2337
};

2338 2339
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2340 2341 2342
{
	pte_t entry;

2343
	if (writable) {
2344 2345
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2346
	} else {
2347 2348
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2349 2350 2351
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2352
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2353 2354 2355 2356

	return entry;
}

2357 2358 2359 2360 2361
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2362
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2363
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2364
		update_mmu_cache(vma, address, ptep);
2365 2366 2367
}


D
David Gibson 已提交
2368 2369 2370 2371 2372
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2373
	unsigned long addr;
2374
	int cow;
2375 2376
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2377 2378 2379
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2380 2381

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2382

2383 2384 2385 2386 2387
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2388
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2389
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2390 2391 2392
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2393
		dst_pte = huge_pte_alloc(dst, addr, sz);
2394 2395 2396 2397
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2398 2399 2400 2401 2402

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2403 2404 2405
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2406
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2407
			if (cow)
2408 2409
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2410 2411
			ptepage = pte_page(entry);
			get_page(ptepage);
2412
			page_dup_rmap(ptepage);
2413 2414
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2415 2416
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2417 2418
	}

2419 2420 2421 2422
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2423 2424
}

N
Naoya Horiguchi 已提交
2425 2426 2427 2428 2429 2430 2431
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2432
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2433
		return 1;
2434
	else
N
Naoya Horiguchi 已提交
2435 2436 2437
		return 0;
}

2438 2439 2440 2441 2442 2443 2444
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2445
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2446
		return 1;
2447
	else
2448 2449 2450
		return 0;
}

2451 2452 2453
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2454
{
2455
	int force_flush = 0;
D
David Gibson 已提交
2456 2457
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2458
	pte_t *ptep;
D
David Gibson 已提交
2459
	pte_t pte;
2460
	spinlock_t *ptl;
D
David Gibson 已提交
2461
	struct page *page;
2462 2463
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2464 2465
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2466

D
David Gibson 已提交
2467
	WARN_ON(!is_vm_hugetlb_page(vma));
2468 2469
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2470

2471
	tlb_start_vma(tlb, vma);
2472
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2473
again:
2474
	for (address = start; address < end; address += sz) {
2475
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2476
		if (!ptep)
2477 2478
			continue;

2479
		ptl = huge_pte_lock(h, mm, ptep);
2480
		if (huge_pmd_unshare(mm, &address, ptep))
2481
			goto unlock;
2482

2483 2484
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2485
			goto unlock;
2486 2487 2488 2489

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2490
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2491
			huge_pte_clear(mm, address, ptep);
2492
			goto unlock;
2493
		}
2494 2495

		page = pte_page(pte);
2496 2497 2498 2499 2500 2501 2502
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2503
				goto unlock;
2504 2505 2506 2507 2508 2509 2510 2511 2512

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2513
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2514
		tlb_remove_tlb_entry(tlb, ptep, address);
2515
		if (huge_pte_dirty(pte))
2516
			set_page_dirty(page);
2517

2518 2519
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2520 2521
		if (force_flush) {
			spin_unlock(ptl);
2522
			break;
2523
		}
2524
		/* Bail out after unmapping reference page if supplied */
2525 2526
		if (ref_page) {
			spin_unlock(ptl);
2527
			break;
2528 2529 2530
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2531
	}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2542
	}
2543
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2544
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2545
}
D
David Gibson 已提交
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2566
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2567
			  unsigned long end, struct page *ref_page)
2568
{
2569 2570 2571 2572 2573
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2574
	tlb_gather_mmu(&tlb, mm, start, end);
2575 2576
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2577 2578
}

2579 2580 2581 2582 2583 2584
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2585 2586
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2587
{
2588
	struct hstate *h = hstate_vma(vma);
2589 2590 2591 2592 2593 2594 2595 2596
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2597
	address = address & huge_page_mask(h);
2598 2599
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2600
	mapping = file_inode(vma->vm_file)->i_mapping;
2601

2602 2603 2604 2605 2606
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2607
	mutex_lock(&mapping->i_mmap_mutex);
2608
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2621 2622
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2623
	}
2624
	mutex_unlock(&mapping->i_mmap_mutex);
2625 2626 2627 2628

	return 1;
}

2629 2630
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2631 2632 2633
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2634
 */
2635
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2636
			unsigned long address, pte_t *ptep, pte_t pte,
2637
			struct page *pagecache_page, spinlock_t *ptl)
2638
{
2639
	struct hstate *h = hstate_vma(vma);
2640
	struct page *old_page, *new_page;
2641
	int outside_reserve = 0;
2642 2643
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2644 2645 2646

	old_page = pte_page(pte);

2647
retry_avoidcopy:
2648 2649
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2650 2651
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2652
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2653
		return 0;
2654 2655
	}

2656 2657 2658 2659 2660 2661 2662 2663 2664
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2665
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2666 2667 2668
			old_page != pagecache_page)
		outside_reserve = 1;

2669
	page_cache_get(old_page);
2670

2671 2672
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2673
	new_page = alloc_huge_page(vma, address, outside_reserve);
2674

2675
	if (IS_ERR(new_page)) {
2676
		long err = PTR_ERR(new_page);
2677
		page_cache_release(old_page);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2690
				spin_lock(ptl);
2691 2692 2693 2694
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2695 2696
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2697 2698
				 */
				return 0;
2699 2700 2701 2702
			}
			WARN_ON_ONCE(1);
		}

2703
		/* Caller expects lock to be held */
2704
		spin_lock(ptl);
2705 2706 2707 2708
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2709 2710
	}

2711 2712 2713 2714
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2715
	if (unlikely(anon_vma_prepare(vma))) {
2716 2717
		page_cache_release(new_page);
		page_cache_release(old_page);
2718
		/* Caller expects lock to be held */
2719
		spin_lock(ptl);
2720
		return VM_FAULT_OOM;
2721
	}
2722

A
Andrea Arcangeli 已提交
2723 2724
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2725
	__SetPageUptodate(new_page);
2726

2727 2728 2729
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2730
	/*
2731
	 * Retake the page table lock to check for racing updates
2732 2733
	 * before the page tables are altered
	 */
2734
	spin_lock(ptl);
2735
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2736
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2737 2738
		ClearPagePrivate(new_page);

2739
		/* Break COW */
2740
		huge_ptep_clear_flush(vma, address, ptep);
2741 2742
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2743
		page_remove_rmap(old_page);
2744
		hugepage_add_new_anon_rmap(new_page, vma, address);
2745 2746 2747
		/* Make the old page be freed below */
		new_page = old_page;
	}
2748
	spin_unlock(ptl);
2749
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2750 2751
	page_cache_release(new_page);
	page_cache_release(old_page);
2752 2753

	/* Caller expects lock to be held */
2754
	spin_lock(ptl);
N
Nick Piggin 已提交
2755
	return 0;
2756 2757
}

2758
/* Return the pagecache page at a given address within a VMA */
2759 2760
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2761 2762
{
	struct address_space *mapping;
2763
	pgoff_t idx;
2764 2765

	mapping = vma->vm_file->f_mapping;
2766
	idx = vma_hugecache_offset(h, vma, address);
2767 2768 2769 2770

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2771 2772 2773 2774 2775
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2791
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2792 2793
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
2794
{
2795
	struct hstate *h = hstate_vma(vma);
2796
	int ret = VM_FAULT_SIGBUS;
2797
	int anon_rmap = 0;
A
Adam Litke 已提交
2798 2799
	unsigned long size;
	struct page *page;
2800
	pte_t new_pte;
2801
	spinlock_t *ptl;
A
Adam Litke 已提交
2802

2803 2804 2805
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2806
	 * COW. Warn that such a situation has occurred as it may not be obvious
2807 2808
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2809 2810
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2811 2812 2813
		return ret;
	}

A
Adam Litke 已提交
2814 2815 2816 2817
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2818 2819 2820
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2821
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2822 2823
		if (idx >= size)
			goto out;
2824
		page = alloc_huge_page(vma, address, 0);
2825
		if (IS_ERR(page)) {
2826 2827 2828 2829 2830
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2831 2832
			goto out;
		}
A
Andrea Arcangeli 已提交
2833
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2834
		__SetPageUptodate(page);
2835

2836
		if (vma->vm_flags & VM_MAYSHARE) {
2837
			int err;
K
Ken Chen 已提交
2838
			struct inode *inode = mapping->host;
2839 2840 2841 2842 2843 2844 2845 2846

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2847
			ClearPagePrivate(page);
K
Ken Chen 已提交
2848 2849

			spin_lock(&inode->i_lock);
2850
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2851
			spin_unlock(&inode->i_lock);
2852
		} else {
2853
			lock_page(page);
2854 2855 2856 2857
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2858
			anon_rmap = 1;
2859
		}
2860
	} else {
2861 2862 2863 2864 2865 2866
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2867
			ret = VM_FAULT_HWPOISON |
2868
				VM_FAULT_SET_HINDEX(hstate_index(h));
2869 2870
			goto backout_unlocked;
		}
2871
	}
2872

2873 2874 2875 2876 2877 2878
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2879
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2880 2881 2882 2883
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2884

2885 2886
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2887
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2888 2889 2890
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2891
	ret = 0;
2892
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2893 2894
		goto backout;

2895 2896
	if (anon_rmap) {
		ClearPagePrivate(page);
2897
		hugepage_add_new_anon_rmap(page, vma, address);
2898
	}
2899 2900
	else
		page_dup_rmap(page);
2901 2902 2903 2904
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2905
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2906
		/* Optimization, do the COW without a second fault */
2907
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2908 2909
	}

2910
	spin_unlock(ptl);
A
Adam Litke 已提交
2911 2912
	unlock_page(page);
out:
2913
	return ret;
A
Adam Litke 已提交
2914 2915

backout:
2916
	spin_unlock(ptl);
2917
backout_unlocked:
A
Adam Litke 已提交
2918 2919 2920
	unlock_page(page);
	put_page(page);
	goto out;
2921 2922
}

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

2958
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2959
			unsigned long address, unsigned int flags)
2960
{
2961
	pte_t *ptep, entry;
2962
	spinlock_t *ptl;
2963
	int ret;
2964 2965
	u32 hash;
	pgoff_t idx;
2966
	struct page *page = NULL;
2967
	struct page *pagecache_page = NULL;
2968
	struct hstate *h = hstate_vma(vma);
2969
	struct address_space *mapping;
2970

2971 2972
	address &= huge_page_mask(h);

2973 2974 2975
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2976
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2977
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2978 2979
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2980
			return VM_FAULT_HWPOISON_LARGE |
2981
				VM_FAULT_SET_HINDEX(hstate_index(h));
2982 2983
	}

2984
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2985 2986 2987
	if (!ptep)
		return VM_FAULT_OOM;

2988 2989 2990
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

2991 2992 2993 2994 2995
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
2996 2997 2998
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

2999 3000
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3001
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3002
		goto out_mutex;
3003
	}
3004

N
Nick Piggin 已提交
3005
	ret = 0;
3006

3007 3008 3009 3010 3011 3012 3013 3014
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3015
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3016 3017
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3018
			goto out_mutex;
3019
		}
3020

3021
		if (!(vma->vm_flags & VM_MAYSHARE))
3022 3023 3024 3025
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3026 3027 3028 3029 3030 3031 3032 3033
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
3034
	get_page(page);
3035
	if (page != pagecache_page)
3036 3037
		lock_page(page);

3038 3039
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3040
	/* Check for a racing update before calling hugetlb_cow */
3041
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3042
		goto out_ptl;
3043 3044


3045
	if (flags & FAULT_FLAG_WRITE) {
3046
		if (!huge_pte_write(entry)) {
3047
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3048 3049
					pagecache_page, ptl);
			goto out_ptl;
3050
		}
3051
		entry = huge_pte_mkdirty(entry);
3052 3053
	}
	entry = pte_mkyoung(entry);
3054 3055
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3056
		update_mmu_cache(vma, address, ptep);
3057

3058 3059
out_ptl:
	spin_unlock(ptl);
3060 3061 3062 3063 3064

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3065 3066
	if (page != pagecache_page)
		unlock_page(page);
3067
	put_page(page);
3068

3069
out_mutex:
3070
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3071
	return ret;
3072 3073
}

3074 3075 3076 3077
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3078
{
3079 3080
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3081
	unsigned long remainder = *nr_pages;
3082
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3083 3084

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3085
		pte_t *pte;
3086
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3087
		int absent;
A
Adam Litke 已提交
3088
		struct page *page;
D
David Gibson 已提交
3089

A
Adam Litke 已提交
3090 3091
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3092
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3093
		 * first, for the page indexing below to work.
3094 3095
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3096
		 */
3097
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3098 3099
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3100 3101 3102 3103
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3104 3105 3106 3107
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3108
		 */
H
Hugh Dickins 已提交
3109 3110
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3111 3112
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3113 3114 3115
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3116

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3128 3129
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3130
			int ret;
D
David Gibson 已提交
3131

3132 3133
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3134 3135
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3136
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3137
				continue;
D
David Gibson 已提交
3138

A
Adam Litke 已提交
3139 3140 3141 3142
			remainder = 0;
			break;
		}

3143
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3144
		page = pte_page(huge_ptep_get(pte));
3145
same_page:
3146
		if (pages) {
H
Hugh Dickins 已提交
3147
			pages[i] = mem_map_offset(page, pfn_offset);
3148
			get_page_foll(pages[i]);
3149
		}
D
David Gibson 已提交
3150 3151 3152 3153 3154

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3155
		++pfn_offset;
D
David Gibson 已提交
3156 3157
		--remainder;
		++i;
3158
		if (vaddr < vma->vm_end && remainder &&
3159
				pfn_offset < pages_per_huge_page(h)) {
3160 3161 3162 3163 3164 3165
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3166
		spin_unlock(ptl);
D
David Gibson 已提交
3167
	}
3168
	*nr_pages = remainder;
D
David Gibson 已提交
3169 3170
	*position = vaddr;

H
Hugh Dickins 已提交
3171
	return i ? i : -EFAULT;
D
David Gibson 已提交
3172
}
3173

3174
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3175 3176 3177 3178 3179 3180
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3181
	struct hstate *h = hstate_vma(vma);
3182
	unsigned long pages = 0;
3183 3184 3185 3186

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3187
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3188
	for (; address < end; address += huge_page_size(h)) {
3189
		spinlock_t *ptl;
3190 3191 3192
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3193
		ptl = huge_pte_lock(h, mm, ptep);
3194 3195
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3196
			spin_unlock(ptl);
3197
			continue;
3198
		}
3199
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3200
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3201
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3202
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3203
			set_huge_pte_at(mm, address, ptep, pte);
3204
			pages++;
3205
		}
3206
		spin_unlock(ptl);
3207
	}
3208 3209 3210 3211 3212 3213
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3214
	flush_tlb_range(vma, start, end);
3215
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3216 3217

	return pages << h->order;
3218 3219
}

3220 3221
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3222
					struct vm_area_struct *vma,
3223
					vm_flags_t vm_flags)
3224
{
3225
	long ret, chg;
3226
	struct hstate *h = hstate_inode(inode);
3227
	struct hugepage_subpool *spool = subpool_inode(inode);
3228
	struct resv_map *resv_map;
3229

3230 3231 3232
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3233
	 * without using reserves
3234
	 */
3235
	if (vm_flags & VM_NORESERVE)
3236 3237
		return 0;

3238 3239 3240 3241 3242 3243
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3244
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3245
		resv_map = inode_resv_map(inode);
3246

3247
		chg = region_chg(resv_map, from, to);
3248 3249 3250

	} else {
		resv_map = resv_map_alloc();
3251 3252 3253
		if (!resv_map)
			return -ENOMEM;

3254
		chg = to - from;
3255

3256 3257 3258 3259
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3260 3261 3262 3263
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3264

3265
	/* There must be enough pages in the subpool for the mapping */
3266 3267 3268 3269
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3270 3271

	/*
3272
	 * Check enough hugepages are available for the reservation.
3273
	 * Hand the pages back to the subpool if there are not
3274
	 */
3275
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3276
	if (ret < 0) {
3277
		hugepage_subpool_put_pages(spool, chg);
3278
		goto out_err;
K
Ken Chen 已提交
3279
	}
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3292
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3293
		region_add(resv_map, from, to);
3294
	return 0;
3295
out_err:
J
Joonsoo Kim 已提交
3296 3297
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3298
	return ret;
3299 3300 3301 3302
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3303
	struct hstate *h = hstate_inode(inode);
3304
	struct resv_map *resv_map = inode_resv_map(inode);
3305
	long chg = 0;
3306
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3307

3308
	if (resv_map)
3309
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3310
	spin_lock(&inode->i_lock);
3311
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3312 3313
	spin_unlock(&inode->i_lock);

3314
	hugepage_subpool_put_pages(spool, (chg - freed));
3315
	hugetlb_acct_memory(h, -(chg - freed));
3316
}
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3377
	spinlock_t *ptl;
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3400 3401
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3402 3403 3404 3405 3406
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3407
	spin_unlock(ptl);
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3421
 * called with page table lock held.
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3440 3441 3442 3443 3444 3445 3446
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3447 3448
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3530 3531
#ifdef CONFIG_MEMORY_FAILURE

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3546 3547 3548 3549
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3550
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3551 3552 3553
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3554
	int ret = -EBUSY;
3555 3556

	spin_lock(&hugetlb_lock);
3557
	if (is_hugepage_on_freelist(hpage)) {
3558 3559 3560 3561 3562 3563 3564
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3565
		set_page_refcounted(hpage);
3566 3567 3568 3569
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3570
	spin_unlock(&hugetlb_lock);
3571
	return ret;
3572
}
3573
#endif
3574 3575 3576

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3577
	VM_BUG_ON_PAGE(!PageHead(page), page);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3588
	VM_BUG_ON_PAGE(!PageHead(page), page);
3589 3590 3591 3592 3593
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3594 3595 3596

bool is_hugepage_active(struct page *page)
{
3597
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}