hugetlb.c 92.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
480 481
{
	int nid = page_to_nid(page);
482
	list_move(&page->lru, &h->hugepage_freelists[nid]);
483 484
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
485 486
}

487 488 489 490
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

491 492 493 494 495 496 497 498
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
499
		return NULL;
500
	list_move(&page->lru, &h->hugepage_activelist);
501
	set_page_refcounted(page);
502 503 504 505 506
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

507 508 509 510 511 512 513 514 515
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

516 517
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
518 519
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
520
{
521
	struct page *page = NULL;
522
	struct mempolicy *mpol;
523
	nodemask_t *nodemask;
524
	struct zonelist *zonelist;
525 526
	struct zone *zone;
	struct zoneref *z;
527
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
528

529 530 531 532 533
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
534
	if (!vma_has_reserves(vma, chg) &&
535
			h->free_huge_pages - h->resv_huge_pages == 0)
536
		goto err;
537

538
	/* If reserves cannot be used, ensure enough pages are in the pool */
539
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540
		goto err;
541

542 543 544
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
545
					htlb_alloc_mask(h), &mpol, &nodemask);
546

547 548
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
549
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 551
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
552 553 554 555 556
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

557
				SetPagePrivate(page);
558
				h->resv_huge_pages--;
559 560
				break;
			}
A
Andrew Morton 已提交
561
		}
L
Linus Torvalds 已提交
562
	}
563

564
	mpol_cond_put(mpol);
565 566
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
567
	return page;
568 569 570

err:
	return NULL;
L
Linus Torvalds 已提交
571 572
}

573
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
574 575
{
	int i;
576

577 578
	VM_BUG_ON(h->order >= MAX_ORDER);

579 580 581
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
582 583 584 585
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
586
	}
587
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
588 589
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
590
	arch_release_hugepage(page);
591
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
592 593
}

594 595 596 597 598 599 600 601 602 603 604
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

605 606
static void free_huge_page(struct page *page)
{
607 608 609 610
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
611
	struct hstate *h = page_hstate(page);
612
	int nid = page_to_nid(page);
613 614
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
615
	bool restore_reserve;
616

617
	set_page_private(page, 0);
618
	page->mapping = NULL;
619
	BUG_ON(page_count(page));
620
	BUG_ON(page_mapcount(page));
621
	restore_reserve = PagePrivate(page);
622
	ClearPagePrivate(page);
623 624

	spin_lock(&hugetlb_lock);
625 626
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
627 628 629
	if (restore_reserve)
		h->resv_huge_pages++;

630
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 632
		/* remove the page from active list */
		list_del(&page->lru);
633 634 635
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
636
	} else {
637
		arch_clear_hugepage_flags(page);
638
		enqueue_huge_page(h, page);
639
	}
640
	spin_unlock(&hugetlb_lock);
641
	hugepage_subpool_put_pages(spool, 1);
642 643
}

644
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645
{
646
	INIT_LIST_HEAD(&page->lru);
647 648
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
649
	set_hugetlb_cgroup(page, NULL);
650 651
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
652 653 654 655
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

656 657 658 659 660 661 662 663 664
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
665
	__ClearPageReserved(page);
666 667
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
668 669 670 671 672 673 674 675 676 677 678 679 680
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
681
		set_page_count(p, 0);
682 683 684 685
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
686 687 688 689 690
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
691 692 693 694 695 696 697 698 699 700 701 702
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
703 704
EXPORT_SYMBOL_GPL(PageHuge);

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	compound_page_dtor *dtor;

	if (!PageHead(page_head))
		return 0;

	dtor = get_compound_page_dtor(page_head);

	return dtor == free_huge_page;
}
EXPORT_SYMBOL_GPL(PageHeadHuge);

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

739
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
740 741
{
	struct page *page;
742

743 744 745
	if (h->order >= MAX_ORDER)
		return NULL;

746
	page = alloc_pages_exact_node(nid,
747
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
748
						__GFP_REPEAT|__GFP_NOWARN,
749
		huge_page_order(h));
L
Linus Torvalds 已提交
750
	if (page) {
751
		if (arch_prepare_hugepage(page)) {
752
			__free_pages(page, huge_page_order(h));
753
			return NULL;
754
		}
755
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
756
	}
757 758 759 760

	return page;
}

761
/*
762 763 764 765 766
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
767
 */
768
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
769
{
770
	nid = next_node(nid, *nodes_allowed);
771
	if (nid == MAX_NUMNODES)
772
		nid = first_node(*nodes_allowed);
773 774 775 776 777
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

778 779 780 781 782 783 784
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

785
/*
786 787 788 789
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
790
 */
791 792
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
793
{
794 795 796 797 798 799
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
800 801

	return nid;
802 803
}

804
/*
805 806 807 808
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
809
 */
810
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
811
{
812 813 814 815 816 817
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
818 819

	return nid;
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

856 857 858 859 860 861
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
862 863
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
864
{
865
	int nr_nodes, node;
866 867
	int ret = 0;

868
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
869 870 871 872
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
873 874
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
875
			struct page *page =
876
				list_entry(h->hugepage_freelists[node].next,
877 878 879
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
880
			h->free_huge_pages_node[node]--;
881 882
			if (acct_surplus) {
				h->surplus_huge_pages--;
883
				h->surplus_huge_pages_node[node]--;
884
			}
885 886
			update_and_free_page(h, page);
			ret = 1;
887
			break;
888
		}
889
	}
890 891 892 893

	return ret;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

932
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
933 934
{
	struct page *page;
935
	unsigned int r_nid;
936

937 938 939
	if (h->order >= MAX_ORDER)
		return NULL;

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
964
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
965 966 967
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
968 969
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
970 971 972
	}
	spin_unlock(&hugetlb_lock);

973
	if (nid == NUMA_NO_NODE)
974
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
975 976 977 978
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
979
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
980
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
981

982 983
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
984
		page = NULL;
985 986
	}

987
	spin_lock(&hugetlb_lock);
988
	if (page) {
989
		INIT_LIST_HEAD(&page->lru);
990
		r_nid = page_to_nid(page);
991
		set_compound_page_dtor(page, free_huge_page);
992
		set_hugetlb_cgroup(page, NULL);
993 994 995
		/*
		 * We incremented the global counters already
		 */
996 997
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
998
		__count_vm_event(HTLB_BUDDY_PGALLOC);
999
	} else {
1000 1001
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1002
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1003
	}
1004
	spin_unlock(&hugetlb_lock);
1005 1006 1007 1008

	return page;
}

1009 1010 1011 1012 1013 1014 1015
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1016
	struct page *page = NULL;
1017 1018

	spin_lock(&hugetlb_lock);
1019 1020
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1021 1022
	spin_unlock(&hugetlb_lock);

1023
	if (!page)
1024 1025 1026 1027 1028
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1029
/*
L
Lucas De Marchi 已提交
1030
 * Increase the hugetlb pool such that it can accommodate a reservation
1031 1032
 * of size 'delta'.
 */
1033
static int gather_surplus_pages(struct hstate *h, int delta)
1034 1035 1036 1037 1038
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1039
	bool alloc_ok = true;
1040

1041
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1042
	if (needed <= 0) {
1043
		h->resv_huge_pages += delta;
1044
		return 0;
1045
	}
1046 1047 1048 1049 1050 1051 1052 1053

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1054
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1055 1056 1057 1058
		if (!page) {
			alloc_ok = false;
			break;
		}
1059 1060
		list_add(&page->lru, &surplus_list);
	}
1061
	allocated += i;
1062 1063 1064 1065 1066 1067

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1068 1069
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1080 1081
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1082
	 * needed to accommodate the reservation.  Add the appropriate number
1083
	 * of pages to the hugetlb pool and free the extras back to the buddy
1084 1085 1086
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1087 1088
	 */
	needed += allocated;
1089
	h->resv_huge_pages += delta;
1090
	ret = 0;
1091

1092
	/* Free the needed pages to the hugetlb pool */
1093
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1094 1095
		if ((--needed) < 0)
			break;
1096 1097 1098 1099 1100 1101
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1102
		enqueue_huge_page(h, page);
1103
	}
1104
free:
1105
	spin_unlock(&hugetlb_lock);
1106 1107

	/* Free unnecessary surplus pages to the buddy allocator */
1108 1109
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1110
	spin_lock(&hugetlb_lock);
1111 1112 1113 1114 1115 1116 1117 1118

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1119
 * Called with hugetlb_lock held.
1120
 */
1121 1122
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1123 1124 1125
{
	unsigned long nr_pages;

1126
	/* Uncommit the reservation */
1127
	h->resv_huge_pages -= unused_resv_pages;
1128

1129 1130 1131 1132
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1133
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1134

1135 1136
	/*
	 * We want to release as many surplus pages as possible, spread
1137 1138 1139 1140 1141
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1142 1143
	 */
	while (nr_pages--) {
1144
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1145
			break;
1146 1147 1148
	}
}

1149 1150 1151
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1152 1153 1154 1155 1156 1157
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1158
 */
1159
static long vma_needs_reservation(struct hstate *h,
1160
			struct vm_area_struct *vma, unsigned long addr)
1161 1162 1163 1164
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1165
	if (vma->vm_flags & VM_MAYSHARE) {
1166
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167 1168 1169
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1170 1171
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1172

1173
	} else  {
1174
		long err;
1175
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1176
		struct resv_map *resv = vma_resv_map(vma);
1177

1178
		err = region_chg(&resv->regions, idx, idx + 1);
1179 1180 1181 1182
		if (err < 0)
			return err;
		return 0;
	}
1183
}
1184 1185
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1186 1187 1188 1189
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1190
	if (vma->vm_flags & VM_MAYSHARE) {
1191
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1192
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1193 1194

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1195
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1196
		struct resv_map *resv = vma_resv_map(vma);
1197 1198

		/* Mark this page used in the map. */
1199
		region_add(&resv->regions, idx, idx + 1);
1200 1201 1202
	}
}

1203
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1204
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1205
{
1206
	struct hugepage_subpool *spool = subpool_vma(vma);
1207
	struct hstate *h = hstate_vma(vma);
1208
	struct page *page;
1209
	long chg;
1210 1211
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1212

1213
	idx = hstate_index(h);
1214
	/*
1215 1216 1217 1218 1219 1220
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1221
	 */
1222
	chg = vma_needs_reservation(h, vma, addr);
1223
	if (chg < 0)
1224
		return ERR_PTR(-ENOMEM);
1225 1226
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1227
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1228

1229 1230
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1231 1232
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1233 1234
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1235
	spin_lock(&hugetlb_lock);
1236
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1237
	if (!page) {
1238
		spin_unlock(&hugetlb_lock);
1239
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1240
		if (!page) {
1241 1242 1243
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1244 1245
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1246
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1247
		}
1248 1249
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1250
		/* Fall through */
K
Ken Chen 已提交
1251
	}
1252 1253
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1254

1255
	set_page_private(page, (unsigned long)spool);
1256

1257
	vma_commit_reservation(h, vma, addr);
1258
	return page;
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1275
int __weak alloc_bootmem_huge_page(struct hstate *h)
1276 1277
{
	struct huge_bootmem_page *m;
1278
	int nr_nodes, node;
1279

1280
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1281 1282
		void *addr;

1283
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1284 1285 1286 1287 1288 1289 1290 1291 1292
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1293
			goto found;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1306 1307 1308 1309 1310 1311 1312 1313
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1314 1315 1316 1317 1318 1319 1320
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1321 1322 1323 1324 1325 1326 1327 1328 1329
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1330
		WARN_ON(page_count(page) != 1);
1331
		prep_compound_huge_page(page, h->order);
1332
		WARN_ON(PageReserved(page));
1333
		prep_new_huge_page(h, page, page_to_nid(page));
1334 1335 1336 1337 1338 1339 1340
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1341
			adjust_managed_page_count(page, 1 << h->order);
1342 1343 1344
	}
}

1345
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1346 1347
{
	unsigned long i;
1348

1349
	for (i = 0; i < h->max_huge_pages; ++i) {
1350 1351 1352
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1353
		} else if (!alloc_fresh_huge_page(h,
1354
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1355 1356
			break;
	}
1357
	h->max_huge_pages = i;
1358 1359 1360 1361 1362 1363 1364
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1365 1366 1367
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1368 1369 1370
	}
}

A
Andi Kleen 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1382 1383 1384 1385 1386
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1387
		char buf[32];
1388
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1389 1390
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1391 1392 1393
	}
}

L
Linus Torvalds 已提交
1394
#ifdef CONFIG_HIGHMEM
1395 1396
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1397
{
1398 1399
	int i;

1400 1401 1402
	if (h->order >= MAX_ORDER)
		return;

1403
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1404
		struct page *page, *next;
1405 1406 1407
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1408
				return;
L
Linus Torvalds 已提交
1409 1410 1411
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1412
			update_and_free_page(h, page);
1413 1414
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1415 1416 1417 1418
		}
	}
}
#else
1419 1420
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1421 1422 1423 1424
{
}
#endif

1425 1426 1427 1428 1429
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1430 1431
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1432
{
1433
	int nr_nodes, node;
1434 1435 1436

	VM_BUG_ON(delta != -1 && delta != 1);

1437 1438 1439 1440
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1441
		}
1442 1443 1444 1445 1446
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1447
		}
1448 1449
	}
	return 0;
1450

1451 1452 1453 1454
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1455 1456
}

1457
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1458 1459
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1460
{
1461
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1462

1463 1464 1465
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1466 1467 1468 1469
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1470 1471 1472 1473 1474 1475
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1476
	 */
L
Linus Torvalds 已提交
1477
	spin_lock(&hugetlb_lock);
1478
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1479
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1480 1481 1482
			break;
	}

1483
	while (count > persistent_huge_pages(h)) {
1484 1485 1486 1487 1488 1489
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1490
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1491 1492 1493 1494
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1495 1496 1497
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1498 1499 1500 1501 1502 1503 1504 1505
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1506 1507 1508 1509 1510 1511 1512 1513
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1514
	 */
1515
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1516
	min_count = max(count, min_count);
1517
	try_to_free_low(h, min_count, nodes_allowed);
1518
	while (min_count < persistent_huge_pages(h)) {
1519
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1520 1521
			break;
	}
1522
	while (count < persistent_huge_pages(h)) {
1523
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1524 1525 1526
			break;
	}
out:
1527
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1528
	spin_unlock(&hugetlb_lock);
1529
	return ret;
L
Linus Torvalds 已提交
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1542 1543 1544
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1545 1546
{
	int i;
1547

1548
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1549 1550 1551
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1552
			return &hstates[i];
1553 1554 1555
		}

	return kobj_to_node_hstate(kobj, nidp);
1556 1557
}

1558
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1559 1560
					struct kobj_attribute *attr, char *buf)
{
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1572
}
1573

1574 1575 1576
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1577 1578
{
	int err;
1579
	int nid;
1580
	unsigned long count;
1581
	struct hstate *h;
1582
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1583

1584
	err = kstrtoul(buf, 10, &count);
1585
	if (err)
1586
		goto out;
1587

1588
	h = kobj_to_hstate(kobj, &nid);
1589 1590 1591 1592 1593
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1594 1595 1596 1597 1598 1599 1600
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1601
			nodes_allowed = &node_states[N_MEMORY];
1602 1603 1604 1605 1606 1607 1608 1609 1610
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1611
		nodes_allowed = &node_states[N_MEMORY];
1612

1613
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1614

1615
	if (nodes_allowed != &node_states[N_MEMORY])
1616 1617 1618
		NODEMASK_FREE(nodes_allowed);

	return len;
1619 1620 1621
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1634 1635 1636
}
HSTATE_ATTR(nr_hugepages);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1658 1659 1660
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1661
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1662 1663
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1664

1665 1666 1667 1668 1669
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1670
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1671

1672 1673 1674
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1675
	err = kstrtoul(buf, 10, &input);
1676
	if (err)
1677
		return err;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1701 1702 1703 1704 1705 1706
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1707
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1708 1709 1710 1711 1712 1713 1714
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1726 1727 1728 1729 1730 1731 1732 1733 1734
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1735 1736 1737
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1738 1739 1740 1741 1742 1743 1744
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1745 1746 1747
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1748 1749
{
	int retval;
1750
	int hi = hstate_index(h);
1751

1752 1753
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1754 1755
		return -ENOMEM;

1756
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1757
	if (retval)
1758
		kobject_put(hstate_kobjs[hi]);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1773 1774
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1775
		if (err)
1776
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1777 1778 1779
	}
}

1780 1781 1782 1783
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1784 1785 1786
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1787 1788 1789 1790 1791 1792 1793 1794 1795
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1796
 * A subset of global hstate attributes for node devices
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1810
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1833
 * Unregister hstate attributes from a single node device.
1834 1835
 * No-op if no hstate attributes attached.
 */
1836
static void hugetlb_unregister_node(struct node *node)
1837 1838
{
	struct hstate *h;
1839
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1840 1841

	if (!nhs->hugepages_kobj)
1842
		return;		/* no hstate attributes */
1843

1844 1845 1846 1847 1848
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1849
		}
1850
	}
1851 1852 1853 1854 1855 1856

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1857
 * hugetlb module exit:  unregister hstate attributes from node devices
1858 1859 1860 1861 1862 1863 1864
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1865
	 * disable node device registrations.
1866 1867 1868 1869 1870 1871 1872
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1873
		hugetlb_unregister_node(node_devices[nid]);
1874 1875 1876
}

/*
1877
 * Register hstate attributes for a single node device.
1878 1879
 * No-op if attributes already registered.
 */
1880
static void hugetlb_register_node(struct node *node)
1881 1882
{
	struct hstate *h;
1883
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1884 1885 1886 1887 1888 1889
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1890
							&node->dev.kobj);
1891 1892 1893 1894 1895 1896 1897 1898
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1899 1900
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1901 1902 1903 1904 1905 1906 1907
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1908
 * hugetlb init time:  register hstate attributes for all registered node
1909 1910
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1911 1912 1913 1914 1915
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1916
	for_each_node_state(nid, N_MEMORY) {
1917
		struct node *node = node_devices[nid];
1918
		if (node->dev.id == nid)
1919 1920 1921 1922
			hugetlb_register_node(node);
	}

	/*
1923
	 * Let the node device driver know we're here so it can
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1945 1946 1947 1948
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1949 1950
	hugetlb_unregister_all_nodes();

1951
	for_each_hstate(h) {
1952
		kobject_put(hstate_kobjs[hstate_index(h)]);
1953 1954 1955 1956 1957 1958 1959 1960
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1961 1962 1963 1964 1965 1966
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1967

1968 1969 1970 1971
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1972
	}
1973
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1974 1975
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1976 1977

	hugetlb_init_hstates();
1978
	gather_bootmem_prealloc();
1979 1980 1981
	report_hugepages();

	hugetlb_sysfs_init();
1982
	hugetlb_register_all_nodes();
1983
	hugetlb_cgroup_file_init();
1984

1985 1986 1987 1988 1989 1990 1991 1992
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1993 1994
	unsigned long i;

1995
	if (size_to_hstate(PAGE_SIZE << order)) {
1996
		pr_warning("hugepagesz= specified twice, ignoring\n");
1997 1998
		return;
	}
1999
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2000
	BUG_ON(order == 0);
2001
	h = &hstates[hugetlb_max_hstate++];
2002 2003
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2004 2005 2006 2007
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2008
	INIT_LIST_HEAD(&h->hugepage_activelist);
2009 2010
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2011 2012
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2013

2014 2015 2016
	parsed_hstate = h;
}

2017
static int __init hugetlb_nrpages_setup(char *s)
2018 2019
{
	unsigned long *mhp;
2020
	static unsigned long *last_mhp;
2021 2022

	/*
2023
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2024 2025
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2026
	if (!hugetlb_max_hstate)
2027 2028 2029 2030
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2031
	if (mhp == last_mhp) {
2032 2033
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2034 2035 2036
		return 1;
	}

2037 2038 2039
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2040 2041 2042 2043 2044
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2045
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2046 2047 2048 2049
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2050 2051
	return 1;
}
2052 2053 2054 2055 2056 2057 2058 2059
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2073 2074 2075
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2076
{
2077 2078
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2079
	int ret;
2080

2081
	tmp = h->max_huge_pages;
2082

2083 2084 2085
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2086 2087
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2088 2089 2090
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2091

2092
	if (write) {
2093 2094
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2095 2096 2097
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2098
			nodes_allowed = &node_states[N_MEMORY];
2099 2100 2101
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2102
		if (nodes_allowed != &node_states[N_MEMORY])
2103 2104
			NODEMASK_FREE(nodes_allowed);
	}
2105 2106
out:
	return ret;
L
Linus Torvalds 已提交
2107
}
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2126
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2127
			void __user *buffer,
2128 2129
			size_t *length, loff_t *ppos)
{
2130
	struct hstate *h = &default_hstate;
2131
	unsigned long tmp;
2132
	int ret;
2133

2134
	tmp = h->nr_overcommit_huge_pages;
2135

2136 2137 2138
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2139 2140
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2141 2142 2143
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2144 2145 2146 2147 2148 2149

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2150 2151
out:
	return ret;
2152 2153
}

L
Linus Torvalds 已提交
2154 2155
#endif /* CONFIG_SYSCTL */

2156
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2157
{
2158
	struct hstate *h = &default_hstate;
2159
	seq_printf(m,
2160 2161 2162 2163 2164
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2165 2166 2167 2168 2169
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2170 2171 2172 2173
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2174
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2175 2176
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2177 2178
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2179 2180 2181
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2199 2200 2201
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2202 2203 2204 2205 2206 2207
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2208 2209
}

2210
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2233
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2234 2235
			goto out;

2236 2237
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2238 2239 2240 2241 2242 2243
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2244
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2245 2246 2247 2248 2249 2250

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2251 2252
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2253
	struct resv_map *resv = vma_resv_map(vma);
2254 2255 2256 2257 2258

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2259
	 * has a reference to the reservation map it cannot disappear until
2260 2261 2262
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2263 2264
	if (resv)
		kref_get(&resv->refs);
2265 2266
}

2267 2268
static void resv_map_put(struct vm_area_struct *vma)
{
2269
	struct resv_map *resv = vma_resv_map(vma);
2270

2271
	if (!resv)
2272
		return;
2273
	kref_put(&resv->refs, resv_map_release);
2274 2275
}

2276 2277
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2278
	struct hstate *h = hstate_vma(vma);
2279
	struct resv_map *resv = vma_resv_map(vma);
2280
	struct hugepage_subpool *spool = subpool_vma(vma);
2281 2282 2283 2284
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2285
	if (resv) {
2286 2287
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2288 2289

		reserve = (end - start) -
2290
			region_count(&resv->regions, start, end);
2291

2292
		resv_map_put(vma);
2293

2294
		if (reserve) {
2295
			hugetlb_acct_memory(h, -reserve);
2296
			hugepage_subpool_put_pages(spool, reserve);
2297
		}
2298
	}
2299 2300
}

L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2307
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2308 2309
{
	BUG();
N
Nick Piggin 已提交
2310
	return 0;
L
Linus Torvalds 已提交
2311 2312
}

2313
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2314
	.fault = hugetlb_vm_op_fault,
2315
	.open = hugetlb_vm_op_open,
2316
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2317 2318
};

2319 2320
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2321 2322 2323
{
	pte_t entry;

2324
	if (writable) {
2325 2326
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2327
	} else {
2328 2329
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2330 2331 2332
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2333
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2334 2335 2336 2337

	return entry;
}

2338 2339 2340 2341 2342
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2343
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2344
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2345
		update_mmu_cache(vma, address, ptep);
2346 2347 2348
}


D
David Gibson 已提交
2349 2350 2351 2352 2353
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2354
	unsigned long addr;
2355
	int cow;
2356 2357
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2358 2359

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2360

2361
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2362
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2363 2364 2365
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2366
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2367 2368
		if (!dst_pte)
			goto nomem;
2369 2370 2371 2372 2373

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2374 2375 2376
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2377
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2378
			if (cow)
2379 2380
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2381 2382
			ptepage = pte_page(entry);
			get_page(ptepage);
2383
			page_dup_rmap(ptepage);
2384 2385
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2386 2387
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2388 2389 2390 2391 2392 2393 2394
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2395 2396 2397 2398 2399 2400 2401
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2402
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2403
		return 1;
2404
	else
N
Naoya Horiguchi 已提交
2405 2406 2407
		return 0;
}

2408 2409 2410 2411 2412 2413 2414
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2415
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416
		return 1;
2417
	else
2418 2419 2420
		return 0;
}

2421 2422 2423
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2424
{
2425
	int force_flush = 0;
D
David Gibson 已提交
2426 2427
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2428
	pte_t *ptep;
D
David Gibson 已提交
2429
	pte_t pte;
2430
	spinlock_t *ptl;
D
David Gibson 已提交
2431
	struct page *page;
2432 2433
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2434 2435
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2436

D
David Gibson 已提交
2437
	WARN_ON(!is_vm_hugetlb_page(vma));
2438 2439
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2440

2441
	tlb_start_vma(tlb, vma);
2442
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443
again:
2444
	for (address = start; address < end; address += sz) {
2445
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2446
		if (!ptep)
2447 2448
			continue;

2449
		ptl = huge_pte_lock(h, mm, ptep);
2450
		if (huge_pmd_unshare(mm, &address, ptep))
2451
			goto unlock;
2452

2453 2454
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2455
			goto unlock;
2456 2457 2458 2459

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2460
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461
			huge_pte_clear(mm, address, ptep);
2462
			goto unlock;
2463
		}
2464 2465

		page = pte_page(pte);
2466 2467 2468 2469 2470 2471 2472
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2473
				goto unlock;
2474 2475 2476 2477 2478 2479 2480 2481 2482

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2483
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2484
		tlb_remove_tlb_entry(tlb, ptep, address);
2485
		if (huge_pte_dirty(pte))
2486
			set_page_dirty(page);
2487

2488 2489
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2490 2491
		if (force_flush) {
			spin_unlock(ptl);
2492
			break;
2493
		}
2494
		/* Bail out after unmapping reference page if supplied */
2495 2496
		if (ref_page) {
			spin_unlock(ptl);
2497
			break;
2498 2499 2500
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2501
	}
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2512
	}
2513
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2514
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2515
}
D
David Gibson 已提交
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2536
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2537
			  unsigned long end, struct page *ref_page)
2538
{
2539 2540 2541 2542 2543
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2544
	tlb_gather_mmu(&tlb, mm, start, end);
2545 2546
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2547 2548
}

2549 2550 2551 2552 2553 2554
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2555 2556
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2557
{
2558
	struct hstate *h = hstate_vma(vma);
2559 2560 2561 2562 2563 2564 2565 2566
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2567
	address = address & huge_page_mask(h);
2568 2569
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2570
	mapping = file_inode(vma->vm_file)->i_mapping;
2571

2572 2573 2574 2575 2576
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2577
	mutex_lock(&mapping->i_mmap_mutex);
2578
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2591 2592
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2593
	}
2594
	mutex_unlock(&mapping->i_mmap_mutex);
2595 2596 2597 2598

	return 1;
}

2599 2600
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2601 2602 2603
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2604
 */
2605
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2606
			unsigned long address, pte_t *ptep, pte_t pte,
2607
			struct page *pagecache_page, spinlock_t *ptl)
2608
{
2609
	struct hstate *h = hstate_vma(vma);
2610
	struct page *old_page, *new_page;
2611
	int outside_reserve = 0;
2612 2613
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2614 2615 2616

	old_page = pte_page(pte);

2617
retry_avoidcopy:
2618 2619
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2620 2621
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2622
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2623
		return 0;
2624 2625
	}

2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2635
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2636 2637 2638
			old_page != pagecache_page)
		outside_reserve = 1;

2639
	page_cache_get(old_page);
2640

2641 2642
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2643
	new_page = alloc_huge_page(vma, address, outside_reserve);
2644

2645
	if (IS_ERR(new_page)) {
2646
		long err = PTR_ERR(new_page);
2647
		page_cache_release(old_page);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2660
				spin_lock(ptl);
2661 2662 2663 2664
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2665 2666
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2667 2668
				 */
				return 0;
2669 2670 2671 2672
			}
			WARN_ON_ONCE(1);
		}

2673
		/* Caller expects lock to be held */
2674
		spin_lock(ptl);
2675 2676 2677 2678
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2679 2680
	}

2681 2682 2683 2684
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2685
	if (unlikely(anon_vma_prepare(vma))) {
2686 2687
		page_cache_release(new_page);
		page_cache_release(old_page);
2688
		/* Caller expects lock to be held */
2689
		spin_lock(ptl);
2690
		return VM_FAULT_OOM;
2691
	}
2692

A
Andrea Arcangeli 已提交
2693 2694
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2695
	__SetPageUptodate(new_page);
2696

2697 2698 2699
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2700
	/*
2701
	 * Retake the page table lock to check for racing updates
2702 2703
	 * before the page tables are altered
	 */
2704
	spin_lock(ptl);
2705
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2706
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2707 2708
		ClearPagePrivate(new_page);

2709
		/* Break COW */
2710
		huge_ptep_clear_flush(vma, address, ptep);
2711 2712
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2713
		page_remove_rmap(old_page);
2714
		hugepage_add_new_anon_rmap(new_page, vma, address);
2715 2716 2717
		/* Make the old page be freed below */
		new_page = old_page;
	}
2718
	spin_unlock(ptl);
2719
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 2721
	page_cache_release(new_page);
	page_cache_release(old_page);
2722 2723

	/* Caller expects lock to be held */
2724
	spin_lock(ptl);
N
Nick Piggin 已提交
2725
	return 0;
2726 2727
}

2728
/* Return the pagecache page at a given address within a VMA */
2729 2730
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2731 2732
{
	struct address_space *mapping;
2733
	pgoff_t idx;
2734 2735

	mapping = vma->vm_file->f_mapping;
2736
	idx = vma_hugecache_offset(h, vma, address);
2737 2738 2739 2740

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2741 2742 2743 2744 2745
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2761
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2762
			unsigned long address, pte_t *ptep, unsigned int flags)
2763
{
2764
	struct hstate *h = hstate_vma(vma);
2765
	int ret = VM_FAULT_SIGBUS;
2766
	int anon_rmap = 0;
2767
	pgoff_t idx;
A
Adam Litke 已提交
2768 2769 2770
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2771
	pte_t new_pte;
2772
	spinlock_t *ptl;
A
Adam Litke 已提交
2773

2774 2775 2776
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2777
	 * COW. Warn that such a situation has occurred as it may not be obvious
2778 2779
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2780 2781
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2782 2783 2784
		return ret;
	}

A
Adam Litke 已提交
2785
	mapping = vma->vm_file->f_mapping;
2786
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2787 2788 2789 2790 2791

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2792 2793 2794
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2795
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2796 2797
		if (idx >= size)
			goto out;
2798
		page = alloc_huge_page(vma, address, 0);
2799
		if (IS_ERR(page)) {
2800 2801 2802 2803 2804
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2805 2806
			goto out;
		}
A
Andrea Arcangeli 已提交
2807
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2808
		__SetPageUptodate(page);
2809

2810
		if (vma->vm_flags & VM_MAYSHARE) {
2811
			int err;
K
Ken Chen 已提交
2812
			struct inode *inode = mapping->host;
2813 2814 2815 2816 2817 2818 2819 2820

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2821
			ClearPagePrivate(page);
K
Ken Chen 已提交
2822 2823

			spin_lock(&inode->i_lock);
2824
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2825
			spin_unlock(&inode->i_lock);
2826
		} else {
2827
			lock_page(page);
2828 2829 2830 2831
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2832
			anon_rmap = 1;
2833
		}
2834
	} else {
2835 2836 2837 2838 2839 2840
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2841
			ret = VM_FAULT_HWPOISON |
2842
				VM_FAULT_SET_HINDEX(hstate_index(h));
2843 2844
			goto backout_unlocked;
		}
2845
	}
2846

2847 2848 2849 2850 2851 2852
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2853
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2854 2855 2856 2857
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2858

2859 2860
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2861
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2862 2863 2864
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2865
	ret = 0;
2866
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2867 2868
		goto backout;

2869 2870
	if (anon_rmap) {
		ClearPagePrivate(page);
2871
		hugepage_add_new_anon_rmap(page, vma, address);
2872
	}
2873 2874
	else
		page_dup_rmap(page);
2875 2876 2877 2878
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2879
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2880
		/* Optimization, do the COW without a second fault */
2881
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2882 2883
	}

2884
	spin_unlock(ptl);
A
Adam Litke 已提交
2885 2886
	unlock_page(page);
out:
2887
	return ret;
A
Adam Litke 已提交
2888 2889

backout:
2890
	spin_unlock(ptl);
2891
backout_unlocked:
A
Adam Litke 已提交
2892 2893 2894
	unlock_page(page);
	put_page(page);
	goto out;
2895 2896
}

2897
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898
			unsigned long address, unsigned int flags)
2899 2900 2901
{
	pte_t *ptep;
	pte_t entry;
2902
	spinlock_t *ptl;
2903
	int ret;
2904
	struct page *page = NULL;
2905
	struct page *pagecache_page = NULL;
2906
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2907
	struct hstate *h = hstate_vma(vma);
2908

2909 2910
	address &= huge_page_mask(h);

2911 2912 2913
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2914
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2915
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2916 2917
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2918
			return VM_FAULT_HWPOISON_LARGE |
2919
				VM_FAULT_SET_HINDEX(hstate_index(h));
2920 2921
	}

2922
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2923 2924 2925
	if (!ptep)
		return VM_FAULT_OOM;

2926 2927 2928 2929 2930 2931
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2932 2933
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2934
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2935
		goto out_mutex;
2936
	}
2937

N
Nick Piggin 已提交
2938
	ret = 0;
2939

2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2948
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2949 2950
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2951
			goto out_mutex;
2952
		}
2953

2954
		if (!(vma->vm_flags & VM_MAYSHARE))
2955 2956 2957 2958
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2959 2960 2961 2962 2963 2964 2965 2966
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2967
	get_page(page);
2968
	if (page != pagecache_page)
2969 2970
		lock_page(page);

2971 2972
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2973
	/* Check for a racing update before calling hugetlb_cow */
2974
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2975
		goto out_ptl;
2976 2977


2978
	if (flags & FAULT_FLAG_WRITE) {
2979
		if (!huge_pte_write(entry)) {
2980
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2981 2982
					pagecache_page, ptl);
			goto out_ptl;
2983
		}
2984
		entry = huge_pte_mkdirty(entry);
2985 2986
	}
	entry = pte_mkyoung(entry);
2987 2988
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2989
		update_mmu_cache(vma, address, ptep);
2990

2991 2992
out_ptl:
	spin_unlock(ptl);
2993 2994 2995 2996 2997

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2998 2999
	if (page != pagecache_page)
		unlock_page(page);
3000
	put_page(page);
3001

3002
out_mutex:
3003
	mutex_unlock(&hugetlb_instantiation_mutex);
3004 3005

	return ret;
3006 3007
}

3008 3009 3010 3011
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3012
{
3013 3014
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3015
	unsigned long remainder = *nr_pages;
3016
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3017 3018

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3019
		pte_t *pte;
3020
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3021
		int absent;
A
Adam Litke 已提交
3022
		struct page *page;
D
David Gibson 已提交
3023

A
Adam Litke 已提交
3024 3025
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3026
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3027
		 * first, for the page indexing below to work.
3028 3029
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3030
		 */
3031
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3032 3033
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3034 3035 3036 3037
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3038 3039 3040 3041
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3042
		 */
H
Hugh Dickins 已提交
3043 3044
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3045 3046
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3047 3048 3049
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3062 3063
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3064
			int ret;
D
David Gibson 已提交
3065

3066 3067
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3068 3069
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3070
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3071
				continue;
D
David Gibson 已提交
3072

A
Adam Litke 已提交
3073 3074 3075 3076
			remainder = 0;
			break;
		}

3077
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3078
		page = pte_page(huge_ptep_get(pte));
3079
same_page:
3080
		if (pages) {
H
Hugh Dickins 已提交
3081
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3082
			get_page(pages[i]);
3083
		}
D
David Gibson 已提交
3084 3085 3086 3087 3088

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3089
		++pfn_offset;
D
David Gibson 已提交
3090 3091
		--remainder;
		++i;
3092
		if (vaddr < vma->vm_end && remainder &&
3093
				pfn_offset < pages_per_huge_page(h)) {
3094 3095 3096 3097 3098 3099
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3100
		spin_unlock(ptl);
D
David Gibson 已提交
3101
	}
3102
	*nr_pages = remainder;
D
David Gibson 已提交
3103 3104
	*position = vaddr;

H
Hugh Dickins 已提交
3105
	return i ? i : -EFAULT;
D
David Gibson 已提交
3106
}
3107

3108
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3109 3110 3111 3112 3113 3114
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3115
	struct hstate *h = hstate_vma(vma);
3116
	unsigned long pages = 0;
3117 3118 3119 3120

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3121
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3122
	for (; address < end; address += huge_page_size(h)) {
3123
		spinlock_t *ptl;
3124 3125 3126
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3127
		ptl = huge_pte_lock(h, mm, ptep);
3128 3129
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3130
			spin_unlock(ptl);
3131
			continue;
3132
		}
3133
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3134
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3135
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3136
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3137
			set_huge_pte_at(mm, address, ptep, pte);
3138
			pages++;
3139
		}
3140
		spin_unlock(ptl);
3141
	}
3142 3143 3144 3145 3146 3147
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3148
	flush_tlb_range(vma, start, end);
3149
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3150 3151

	return pages << h->order;
3152 3153
}

3154 3155
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3156
					struct vm_area_struct *vma,
3157
					vm_flags_t vm_flags)
3158
{
3159
	long ret, chg;
3160
	struct hstate *h = hstate_inode(inode);
3161
	struct hugepage_subpool *spool = subpool_inode(inode);
3162

3163 3164 3165
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3166
	 * without using reserves
3167
	 */
3168
	if (vm_flags & VM_NORESERVE)
3169 3170
		return 0;

3171 3172 3173 3174 3175 3176
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3177
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3178
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3179 3180 3181 3182 3183
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3184
		chg = to - from;
3185

3186 3187 3188 3189
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3190 3191 3192 3193
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3194

3195
	/* There must be enough pages in the subpool for the mapping */
3196 3197 3198 3199
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3200 3201

	/*
3202
	 * Check enough hugepages are available for the reservation.
3203
	 * Hand the pages back to the subpool if there are not
3204
	 */
3205
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3206
	if (ret < 0) {
3207
		hugepage_subpool_put_pages(spool, chg);
3208
		goto out_err;
K
Ken Chen 已提交
3209
	}
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3222
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3223
		region_add(&inode->i_mapping->private_list, from, to);
3224
	return 0;
3225
out_err:
3226 3227
	if (vma)
		resv_map_put(vma);
3228
	return ret;
3229 3230 3231 3232
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3233
	struct hstate *h = hstate_inode(inode);
3234
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3235
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3236 3237

	spin_lock(&inode->i_lock);
3238
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3239 3240
	spin_unlock(&inode->i_lock);

3241
	hugepage_subpool_put_pages(spool, (chg - freed));
3242
	hugetlb_acct_memory(h, -(chg - freed));
3243
}
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3304
	spinlock_t *ptl;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3327 3328
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3329 3330 3331 3332 3333
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3334
	spin_unlock(ptl);
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3348
 * called with page table lock held.
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3367 3368 3369 3370 3371 3372 3373
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3374 3375
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3457 3458
#ifdef CONFIG_MEMORY_FAILURE

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3473 3474 3475 3476
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3477
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3478 3479 3480
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3481
	int ret = -EBUSY;
3482 3483

	spin_lock(&hugetlb_lock);
3484
	if (is_hugepage_on_freelist(hpage)) {
3485 3486 3487 3488 3489 3490 3491
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3492
		set_page_refcounted(hpage);
3493 3494 3495 3496
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3497
	spin_unlock(&hugetlb_lock);
3498
	return ret;
3499
}
3500
#endif
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

bool is_hugepage_active(struct page *page)
{
	VM_BUG_ON(!PageHuge(page));
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}