hugetlb.c 75.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64 65 66 67 68
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

431
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
432 433
{
	int nid = page_to_nid(page);
434 435 436
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
437 438
}

439 440 441 442 443 444 445 446
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
447
	set_page_refcounted(page);
448 449 450 451 452
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

453 454
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
455
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
456 457
{
	struct page *page = NULL;
458
	struct mempolicy *mpol;
459
	nodemask_t *nodemask;
460
	struct zonelist *zonelist;
461 462
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
463

464 465 466
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
467 468 469 470 471
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
472
	if (!vma_has_reserves(vma) &&
473
			h->free_huge_pages - h->resv_huge_pages == 0)
474
		goto err;
475

476
	/* If reserves cannot be used, ensure enough pages are in the pool */
477
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478
		goto err;;
479

480 481
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
482 483 484 485 486 487 488
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
489
		}
L
Linus Torvalds 已提交
490
	}
491
err:
492
	mpol_cond_put(mpol);
493
	put_mems_allowed();
L
Linus Torvalds 已提交
494 495 496
	return page;
}

497
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
498 499
{
	int i;
500

501 502
	VM_BUG_ON(h->order >= MAX_ORDER);

503 504 505
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
506 507 508 509 510 511
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
512
	arch_release_hugepage(page);
513
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
514 515
}

516 517 518 519 520 521 522 523 524 525 526
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

527 528
static void free_huge_page(struct page *page)
{
529 530 531 532
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
533
	struct hstate *h = page_hstate(page);
534
	int nid = page_to_nid(page);
535
	struct address_space *mapping;
536

537
	mapping = (struct address_space *) page_private(page);
538
	set_page_private(page, 0);
539
	page->mapping = NULL;
540
	BUG_ON(page_count(page));
541
	BUG_ON(page_mapcount(page));
542 543 544
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
545
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 547 548
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
549
	} else {
550
		enqueue_huge_page(h, page);
551
	}
552
	spin_unlock(&hugetlb_lock);
553
	if (mapping)
554
		hugetlb_put_quota(mapping, 1);
555 556
}

557
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
558 559 560
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
561 562
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
563 564 565 566
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

595 596
EXPORT_SYMBOL_GPL(PageHuge);

597
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
598 599
{
	struct page *page;
600

601 602 603
	if (h->order >= MAX_ORDER)
		return NULL;

604
	page = alloc_pages_exact_node(nid,
605 606
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
607
		huge_page_order(h));
L
Linus Torvalds 已提交
608
	if (page) {
609
		if (arch_prepare_hugepage(page)) {
610
			__free_pages(page, huge_page_order(h));
611
			return NULL;
612
		}
613
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
614
	}
615 616 617 618

	return page;
}

619
/*
620 621 622 623 624
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
625
 */
626
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627
{
628
	nid = next_node(nid, *nodes_allowed);
629
	if (nid == MAX_NUMNODES)
630
		nid = first_node(*nodes_allowed);
631 632 633 634 635
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

636 637 638 639 640 641 642
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

643
/*
644 645 646 647
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
648
 */
649 650
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
651
{
652 653 654 655 656 657
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658 659

	return nid;
660 661
}

662
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663 664 665 666 667 668
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

669
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670
	next_nid = start_nid;
671 672

	do {
673
		page = alloc_fresh_huge_page_node(h, next_nid);
674
		if (page) {
675
			ret = 1;
676 677
			break;
		}
678
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679
	} while (next_nid != start_nid);
680

681 682 683 684 685
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

686
	return ret;
L
Linus Torvalds 已提交
687 688
}

689
/*
690 691 692 693
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
694
 */
695
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696
{
697 698 699 700 701 702
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703 704

	return nid;
705 706 707 708 709 710 711 712
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
713 714
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
715 716 717 718 719
{
	int start_nid;
	int next_nid;
	int ret = 0;

720
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 722 723
	next_nid = start_nid;

	do {
724 725 726 727 728 729
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
730 731 732 733 734 735
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
736 737 738 739
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
740 741
			update_and_free_page(h, page);
			ret = 1;
742
			break;
743
		}
744
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
745
	} while (next_nid != start_nid);
746 747 748 749

	return ret;
}

750
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751 752
{
	struct page *page;
753
	unsigned int r_nid;
754

755 756 757
	if (h->order >= MAX_ORDER)
		return NULL;

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
782
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 784 785
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
786 787
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
788 789 790
	}
	spin_unlock(&hugetlb_lock);

791 792 793 794 795 796 797 798
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799

800 801 802 803 804
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

805
	spin_lock(&hugetlb_lock);
806
	if (page) {
807
		r_nid = page_to_nid(page);
808
		set_compound_page_dtor(page, free_huge_page);
809 810 811
		/*
		 * We incremented the global counters already
		 */
812 813
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
814
		__count_vm_event(HTLB_BUDDY_PGALLOC);
815
	} else {
816 817
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
818
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819
	}
820
	spin_unlock(&hugetlb_lock);
821 822 823 824

	return page;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

844 845 846 847
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
848
static int gather_surplus_pages(struct hstate *h, int delta)
849 850 851 852 853 854
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

855
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856
	if (needed <= 0) {
857
		h->resv_huge_pages += delta;
858
		return 0;
859
	}
860 861 862 863 864 865 866 867

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
868
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869
		if (!page)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			goto free;

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
886 887
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
888 889 890 891 892 893 894
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
895 896 897
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
898 899
	 */
	needed += allocated;
900
	h->resv_huge_pages += delta;
901
	ret = 0;
902 903

	spin_unlock(&hugetlb_lock);
904
	/* Free the needed pages to the hugetlb pool */
905
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 907
		if ((--needed) < 0)
			break;
908
		list_del(&page->lru);
909 910 911 912 913 914
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
915
		enqueue_huge_page(h, page);
916 917 918
	}

	/* Free unnecessary surplus pages to the buddy allocator */
919
free:
920 921 922
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
923
			put_page(page);
924
		}
925
	}
926
	spin_lock(&hugetlb_lock);
927 928 929 930 931 932 933 934

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
935
 * Called with hugetlb_lock held.
936
 */
937 938
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
939 940 941
{
	unsigned long nr_pages;

942
	/* Uncommit the reservation */
943
	h->resv_huge_pages -= unused_resv_pages;
944

945 946 947 948
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

949
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950

951 952
	/*
	 * We want to release as many surplus pages as possible, spread
953 954 955 956 957
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
958 959
	 */
	while (nr_pages--) {
960
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961
			break;
962 963 964
	}
}

965 966 967 968 969 970 971 972 973
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
974
static long vma_needs_reservation(struct hstate *h,
975
			struct vm_area_struct *vma, unsigned long addr)
976 977 978 979
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

980
	if (vma->vm_flags & VM_MAYSHARE) {
981
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 983 984
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

985 986
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
987

988
	} else  {
989
		long err;
990
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 992 993 994 995 996 997
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
998
}
999 1000
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1001 1002 1003 1004
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1005
	if (vma->vm_flags & VM_MAYSHARE) {
1006
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008 1009

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 1012 1013 1014
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1015 1016 1017
	}
}

1018
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1020
{
1021
	struct hstate *h = hstate_vma(vma);
1022
	struct page *page;
1023 1024
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1025
	long chg;
1026 1027 1028 1029 1030

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1031 1032
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1033
	 */
1034
	chg = vma_needs_reservation(h, vma, addr);
1035 1036 1037
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1038 1039
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1040 1041

	spin_lock(&hugetlb_lock);
1042
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1043
	spin_unlock(&hugetlb_lock);
1044

K
Ken Chen 已提交
1045
	if (!page) {
1046
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1047
		if (!page) {
1048
			hugetlb_put_quota(inode->i_mapping, chg);
1049
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1050 1051
		}
	}
1052

1053
	set_page_private(page, (unsigned long) mapping);
1054

1055
	vma_commit_reservation(h, vma, addr);
1056

1057
	return page;
1058 1059
}

1060
int __weak alloc_bootmem_huge_page(struct hstate *h)
1061 1062
{
	struct huge_bootmem_page *m;
1063
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064 1065 1066 1067 1068

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1069
				NODE_DATA(hstate_next_node_to_alloc(h,
1070
						&node_states[N_HIGH_MEMORY])),
1071 1072 1073 1074 1075 1076 1077 1078 1079
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1080
			goto found;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1094 1095 1096 1097 1098 1099 1100 1101
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1112
		prep_compound_huge_page(page, h->order);
1113 1114 1115 1116
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1117
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1118 1119
{
	unsigned long i;
1120

1121
	for (i = 0; i < h->max_huge_pages; ++i) {
1122 1123 1124
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1125 1126
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1127 1128
			break;
	}
1129
	h->max_huge_pages = i;
1130 1131 1132 1133 1134 1135 1136
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1137 1138 1139
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1140 1141 1142
	}
}

A
Andi Kleen 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1154 1155 1156 1157 1158
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1159 1160 1161 1162 1163
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1164 1165 1166
	}
}

L
Linus Torvalds 已提交
1167
#ifdef CONFIG_HIGHMEM
1168 1169
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1170
{
1171 1172
	int i;

1173 1174 1175
	if (h->order >= MAX_ORDER)
		return;

1176
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1177
		struct page *page, *next;
1178 1179 1180
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1181
				return;
L
Linus Torvalds 已提交
1182 1183 1184
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1185
			update_and_free_page(h, page);
1186 1187
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1188 1189 1190 1191
		}
	}
}
#else
1192 1193
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1194 1195 1196 1197
{
}
#endif

1198 1199 1200 1201 1202
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1203 1204
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1205
{
1206
	int start_nid, next_nid;
1207 1208 1209 1210
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1211
	if (delta < 0)
1212
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1213
	else
1214
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1215 1216 1217 1218 1219 1220 1221 1222
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1223
			if (!h->surplus_huge_pages_node[nid]) {
1224 1225
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1226
				continue;
1227
			}
1228 1229 1230 1231 1232 1233
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1234
						h->nr_huge_pages_node[nid]) {
1235 1236
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1237
				continue;
1238
			}
1239
		}
1240 1241 1242 1243 1244

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1245
	} while (next_nid != start_nid);
1246 1247 1248 1249

	return ret;
}

1250
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251 1252
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1253
{
1254
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1255

1256 1257 1258
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1259 1260 1261 1262
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1263 1264 1265 1266 1267 1268
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1269
	 */
L
Linus Torvalds 已提交
1270
	spin_lock(&hugetlb_lock);
1271
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1272
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1273 1274 1275
			break;
	}

1276
	while (count > persistent_huge_pages(h)) {
1277 1278 1279 1280 1281 1282
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1283
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1284 1285 1286 1287
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1288 1289 1290
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1291 1292 1293 1294 1295 1296 1297 1298
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1299 1300 1301 1302 1303 1304 1305 1306
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1307
	 */
1308
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1309
	min_count = max(count, min_count);
1310
	try_to_free_low(h, min_count, nodes_allowed);
1311
	while (min_count < persistent_huge_pages(h)) {
1312
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1313 1314
			break;
	}
1315
	while (count < persistent_huge_pages(h)) {
1316
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1317 1318 1319
			break;
	}
out:
1320
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1321
	spin_unlock(&hugetlb_lock);
1322
	return ret;
L
Linus Torvalds 已提交
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1335 1336 1337
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1338 1339
{
	int i;
1340

1341
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1342 1343 1344
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1345
			return &hstates[i];
1346 1347 1348
		}

	return kobj_to_node_hstate(kobj, nidp);
1349 1350
}

1351
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1352 1353
					struct kobj_attribute *attr, char *buf)
{
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1365
}
1366 1367 1368
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1369 1370
{
	int err;
1371
	int nid;
1372
	unsigned long count;
1373
	struct hstate *h;
1374
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1375

1376
	err = strict_strtoul(buf, 10, &count);
1377 1378
	if (err) {
		NODEMASK_FREE(nodes_allowed);
1379
		return 0;
1380
	}
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1402
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1403

1404
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1420 1421 1422
}
HSTATE_ATTR(nr_hugepages);

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1444 1445 1446
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1447
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1448 1449 1450 1451 1452 1453 1454
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1455
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1483 1484 1485 1486 1487 1488
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1489
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1490 1491 1492 1493 1494 1495 1496
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1508 1509 1510 1511 1512 1513 1514 1515 1516
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1517 1518 1519
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1520 1521 1522 1523 1524 1525 1526
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1527 1528 1529
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1530 1531
{
	int retval;
1532
	int hi = h - hstates;
1533

1534 1535
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1536 1537
		return -ENOMEM;

1538
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1539
	if (retval)
1540
		kobject_put(hstate_kobjs[hi]);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1555 1556
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1557 1558 1559 1560 1561 1562
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1625
		return;		/* no hstate attributes */
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1690 1691 1692
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1693 1694 1695 1696 1697
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1698
	for_each_node_state(nid, N_HIGH_MEMORY) {
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1727 1728 1729 1730
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1731 1732
	hugetlb_unregister_all_nodes();

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1743 1744 1745 1746 1747 1748
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1749

1750 1751 1752 1753
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1754
	}
1755 1756 1757
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1758 1759 1760

	hugetlb_init_hstates();

1761 1762
	gather_bootmem_prealloc();

1763 1764 1765 1766
	report_hugepages();

	hugetlb_sysfs_init();

1767 1768
	hugetlb_register_all_nodes();

1769 1770 1771 1772 1773 1774 1775 1776
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1777 1778
	unsigned long i;

1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1788 1789 1790 1791
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1792 1793
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1794 1795
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1796

1797 1798 1799
	parsed_hstate = h;
}

1800
static int __init hugetlb_nrpages_setup(char *s)
1801 1802
{
	unsigned long *mhp;
1803
	static unsigned long *last_mhp;
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1814 1815 1816 1817 1818 1819
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1820 1821 1822
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1833 1834
	return 1;
}
1835 1836 1837 1838 1839 1840 1841 1842
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1856 1857 1858
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1859
{
1860 1861
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1862
	int ret;
1863 1864 1865 1866 1867 1868

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1869 1870 1871
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1872

1873
	if (write) {
1874 1875
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1886 1887
out:
	return ret;
L
Linus Torvalds 已提交
1888
}
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1907
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1908
			void __user *buffer,
1909 1910
			size_t *length, loff_t *ppos)
{
1911
	proc_dointvec(table, write, buffer, length, ppos);
1912 1913 1914 1915 1916 1917 1918
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1919
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1920
			void __user *buffer,
1921 1922
			size_t *length, loff_t *ppos)
{
1923
	struct hstate *h = &default_hstate;
1924
	unsigned long tmp;
1925
	int ret;
1926 1927 1928 1929 1930 1931

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1932 1933 1934
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1935 1936 1937 1938 1939 1940

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
1941 1942
out:
	return ret;
1943 1944
}

L
Linus Torvalds 已提交
1945 1946
#endif /* CONFIG_SYSCTL */

1947
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1948
{
1949
	struct hstate *h = &default_hstate;
1950
	seq_printf(m,
1951 1952 1953 1954 1955
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1956 1957 1958 1959 1960
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1961 1962 1963 1964
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1965
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1966 1967
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1968 1969
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1970 1971 1972
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1978 1979
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1980 1981
}

1982
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2005
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2006 2007
			goto out;

2008 2009
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2010 2011 2012 2013 2014 2015
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2016
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2017 2018 2019 2020 2021 2022

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2039 2040
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2041
	struct hstate *h = hstate_vma(vma);
2042 2043 2044 2045 2046 2047
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2048 2049
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2050 2051 2052 2053 2054 2055

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2056
		if (reserve) {
2057
			hugetlb_acct_memory(h, -reserve);
2058 2059
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2060
	}
2061 2062
}

L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2069
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2070 2071
{
	BUG();
N
Nick Piggin 已提交
2072
	return 0;
L
Linus Torvalds 已提交
2073 2074
}

2075
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2076
	.fault = hugetlb_vm_op_fault,
2077
	.open = hugetlb_vm_op_open,
2078
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2079 2080
};

2081 2082
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2083 2084 2085
{
	pte_t entry;

2086
	if (writable) {
D
David Gibson 已提交
2087 2088 2089
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2090
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2091 2092 2093 2094 2095 2096 2097
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2098 2099 2100 2101 2102
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2103 2104
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2105
		update_mmu_cache(vma, address, ptep);
2106
	}
2107 2108 2109
}


D
David Gibson 已提交
2110 2111 2112 2113 2114
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2115
	unsigned long addr;
2116
	int cow;
2117 2118
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2119 2120

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2121

2122
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2123 2124 2125
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2126
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2127 2128
		if (!dst_pte)
			goto nomem;
2129 2130 2131 2132 2133

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2134
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2135
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2136
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2137
			if (cow)
2138 2139
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2140 2141
			ptepage = pte_page(entry);
			get_page(ptepage);
2142
			page_dup_rmap(ptepage);
2143 2144 2145
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2146
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2147 2148 2149 2150 2151 2152 2153
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp)) {
		return 1;
	} else
		return 0;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
		return 1;
	} else
		return 0;
}

2180
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2181
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2182 2183 2184
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2185
	pte_t *ptep;
D
David Gibson 已提交
2186 2187
	pte_t pte;
	struct page *page;
2188
	struct page *tmp;
2189 2190 2191
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2192 2193 2194 2195 2196
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2197
	LIST_HEAD(page_list);
D
David Gibson 已提交
2198 2199

	WARN_ON(!is_vm_hugetlb_page(vma));
2200 2201
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2202

A
Andrea Arcangeli 已提交
2203
	mmu_notifier_invalidate_range_start(mm, start, end);
2204
	spin_lock(&mm->page_table_lock);
2205
	for (address = start; address < end; address += sz) {
2206
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2207
		if (!ptep)
2208 2209
			continue;

2210 2211 2212
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2234
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2235
		if (huge_pte_none(pte))
D
David Gibson 已提交
2236
			continue;
2237

2238 2239 2240 2241 2242 2243
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2244
		page = pte_page(pte);
2245 2246
		if (pte_dirty(pte))
			set_page_dirty(page);
2247
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2248
	}
L
Linus Torvalds 已提交
2249
	spin_unlock(&mm->page_table_lock);
2250
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2251
	mmu_notifier_invalidate_range_end(mm, start, end);
2252
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2253
		page_remove_rmap(page);
2254 2255 2256
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2257
}
D
David Gibson 已提交
2258

2259
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2260
			  unsigned long end, struct page *ref_page)
2261
{
2262 2263 2264
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2265 2266
}

2267 2268 2269 2270 2271 2272
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2273 2274
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2275
{
2276
	struct hstate *h = hstate_vma(vma);
2277 2278 2279 2280 2281 2282 2283 2284 2285
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2286
	address = address & huge_page_mask(h);
2287 2288 2289 2290
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2291 2292 2293 2294 2295 2296
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2310
			__unmap_hugepage_range(iter_vma,
2311
				address, address + huge_page_size(h),
2312 2313
				page);
	}
2314
	spin_unlock(&mapping->i_mmap_lock);
2315 2316 2317 2318

	return 1;
}

2319 2320 2321
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2322
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2323 2324
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2325
{
2326
	struct hstate *h = hstate_vma(vma);
2327
	struct page *old_page, *new_page;
2328
	int avoidcopy;
2329
	int outside_reserve = 0;
2330 2331 2332

	old_page = pte_page(pte);

2333
retry_avoidcopy:
2334 2335
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2336
	avoidcopy = (page_mapcount(old_page) == 1);
2337
	if (avoidcopy) {
2338 2339
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2340
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2341
		return 0;
2342 2343
	}

2344 2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2353
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2354 2355 2356 2357
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2358
	page_cache_get(old_page);
2359 2360 2361

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2362
	new_page = alloc_huge_page(vma, address, outside_reserve);
2363

2364
	if (IS_ERR(new_page)) {
2365
		page_cache_release(old_page);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2379
				spin_lock(&mm->page_table_lock);
2380 2381 2382 2383 2384
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2385 2386
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2387
		return -PTR_ERR(new_page);
2388 2389
	}

2390 2391 2392 2393
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2394 2395 2396
	if (unlikely(anon_vma_prepare(vma))) {
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2397
		return VM_FAULT_OOM;
2398
	}
2399

A
Andrea Arcangeli 已提交
2400 2401
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2402
	__SetPageUptodate(new_page);
2403

2404 2405 2406 2407 2408
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2409
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2410
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2411
		/* Break COW */
2412 2413 2414
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2415
		huge_ptep_clear_flush(vma, address, ptep);
2416 2417
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2418
		page_remove_rmap(old_page);
2419
		hugepage_add_new_anon_rmap(new_page, vma, address);
2420 2421
		/* Make the old page be freed below */
		new_page = old_page;
2422 2423 2424
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2425 2426 2427
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2428
	return 0;
2429 2430
}

2431
/* Return the pagecache page at a given address within a VMA */
2432 2433
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2434 2435
{
	struct address_space *mapping;
2436
	pgoff_t idx;
2437 2438

	mapping = vma->vm_file->f_mapping;
2439
	idx = vma_hugecache_offset(h, vma, address);
2440 2441 2442 2443

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2444 2445 2446 2447 2448
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2464
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2465
			unsigned long address, pte_t *ptep, unsigned int flags)
2466
{
2467
	struct hstate *h = hstate_vma(vma);
2468
	int ret = VM_FAULT_SIGBUS;
2469
	pgoff_t idx;
A
Adam Litke 已提交
2470 2471 2472
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2473
	pte_t new_pte;
A
Adam Litke 已提交
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2487
	mapping = vma->vm_file->f_mapping;
2488
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2489 2490 2491 2492 2493

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2494 2495 2496
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2497
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2498 2499
		if (idx >= size)
			goto out;
2500
		page = alloc_huge_page(vma, address, 0);
2501 2502
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2503 2504
			goto out;
		}
A
Andrea Arcangeli 已提交
2505
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2506
		__SetPageUptodate(page);
2507

2508
		if (vma->vm_flags & VM_MAYSHARE) {
2509
			int err;
K
Ken Chen 已提交
2510
			struct inode *inode = mapping->host;
2511 2512 2513 2514 2515 2516 2517 2518

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2519 2520

			spin_lock(&inode->i_lock);
2521
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2522
			spin_unlock(&inode->i_lock);
2523
			page_dup_rmap(page);
2524
		} else {
2525
			lock_page(page);
2526 2527 2528 2529 2530
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2531
		}
2532
	} else {
2533 2534 2535 2536 2537 2538
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2539 2540
			ret = VM_FAULT_HWPOISON | 
			      VM_FAULT_SET_HINDEX(h - hstates);
2541 2542
			goto backout_unlocked;
		}
2543
		page_dup_rmap(page);
2544
	}
2545

2546 2547 2548 2549 2550 2551
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2552
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2553 2554 2555 2556
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2557

2558
	spin_lock(&mm->page_table_lock);
2559
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2560 2561 2562
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2563
	ret = 0;
2564
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2565 2566
		goto backout;

2567 2568 2569 2570
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2571
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2572
		/* Optimization, do the COW without a second fault */
2573
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2574 2575
	}

2576
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2577 2578
	unlock_page(page);
out:
2579
	return ret;
A
Adam Litke 已提交
2580 2581 2582

backout:
	spin_unlock(&mm->page_table_lock);
2583
backout_unlocked:
A
Adam Litke 已提交
2584 2585 2586
	unlock_page(page);
	put_page(page);
	goto out;
2587 2588
}

2589
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2590
			unsigned long address, unsigned int flags)
2591 2592 2593
{
	pte_t *ptep;
	pte_t entry;
2594
	int ret;
2595
	struct page *page = NULL;
2596
	struct page *pagecache_page = NULL;
2597
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2598
	struct hstate *h = hstate_vma(vma);
2599

2600 2601 2602
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2603 2604 2605 2606
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2607 2608
			return VM_FAULT_HWPOISON_LARGE | 
			       VM_FAULT_SET_HINDEX(h - hstates);
2609 2610
	}

2611
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2612 2613 2614
	if (!ptep)
		return VM_FAULT_OOM;

2615 2616 2617 2618 2619 2620
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2621 2622
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2623
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2624
		goto out_mutex;
2625
	}
2626

N
Nick Piggin 已提交
2627
	ret = 0;
2628

2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2637
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2638 2639
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2640
			goto out_mutex;
2641
		}
2642

2643
		if (!(vma->vm_flags & VM_MAYSHARE))
2644 2645 2646 2647
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2657 2658
		lock_page(page);

2659 2660
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2661 2662 2663 2664
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2665
	if (flags & FAULT_FLAG_WRITE) {
2666
		if (!pte_write(entry)) {
2667 2668
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2669 2670 2671 2672 2673
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2674 2675
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2676
		update_mmu_cache(vma, address, ptep);
2677 2678

out_page_table_lock:
2679
	spin_unlock(&mm->page_table_lock);
2680 2681 2682 2683 2684

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2685 2686
	if (page != pagecache_page)
		unlock_page(page);
2687

2688
out_mutex:
2689
	mutex_unlock(&hugetlb_instantiation_mutex);
2690 2691

	return ret;
2692 2693
}

A
Andi Kleen 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2703 2704
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2705
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2706
			unsigned int flags)
D
David Gibson 已提交
2707
{
2708 2709
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2710
	int remainder = *length;
2711
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2712

2713
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2714
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2715
		pte_t *pte;
H
Hugh Dickins 已提交
2716
		int absent;
A
Adam Litke 已提交
2717
		struct page *page;
D
David Gibson 已提交
2718

A
Adam Litke 已提交
2719 2720
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2721
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2722 2723
		 * first, for the page indexing below to work.
		 */
2724
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2725 2726 2727 2728
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2729 2730 2731 2732
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2733
		 */
H
Hugh Dickins 已提交
2734 2735
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2736 2737 2738
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2739

H
Hugh Dickins 已提交
2740 2741
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2742
			int ret;
D
David Gibson 已提交
2743

A
Adam Litke 已提交
2744
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2745 2746
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2747
			spin_lock(&mm->page_table_lock);
2748
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2749
				continue;
D
David Gibson 已提交
2750

A
Adam Litke 已提交
2751 2752 2753 2754
			remainder = 0;
			break;
		}

2755
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2756
		page = pte_page(huge_ptep_get(pte));
2757
same_page:
2758
		if (pages) {
H
Hugh Dickins 已提交
2759
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2760
			get_page(pages[i]);
2761
		}
D
David Gibson 已提交
2762 2763 2764 2765 2766

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2767
		++pfn_offset;
D
David Gibson 已提交
2768 2769
		--remainder;
		++i;
2770
		if (vaddr < vma->vm_end && remainder &&
2771
				pfn_offset < pages_per_huge_page(h)) {
2772 2773 2774 2775 2776 2777
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2778
	}
2779
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2780 2781 2782
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2783
	return i ? i : -EFAULT;
D
David Gibson 已提交
2784
}
2785 2786 2787 2788 2789 2790 2791 2792

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2793
	struct hstate *h = hstate_vma(vma);
2794 2795 2796 2797

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2798
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2799
	spin_lock(&mm->page_table_lock);
2800
	for (; address < end; address += huge_page_size(h)) {
2801 2802 2803
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2804 2805
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2806
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2807 2808 2809 2810 2811 2812
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2813
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2814 2815 2816 2817

	flush_tlb_range(vma, start, end);
}

2818 2819
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2820 2821
					struct vm_area_struct *vma,
					int acctflag)
2822
{
2823
	long ret, chg;
2824
	struct hstate *h = hstate_inode(inode);
2825

2826 2827 2828 2829 2830 2831 2832 2833
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2834 2835 2836 2837 2838 2839
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2840
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2841
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2842 2843 2844 2845 2846
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2847
		chg = to - from;
2848

2849 2850 2851 2852
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2853 2854
	if (chg < 0)
		return chg;
2855

2856
	/* There must be enough filesystem quota for the mapping */
2857 2858
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2859 2860

	/*
2861 2862
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2863
	 */
2864
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2865 2866
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2867
		return ret;
K
Ken Chen 已提交
2868
	}
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2881
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2882
		region_add(&inode->i_mapping->private_list, from, to);
2883 2884 2885 2886 2887
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2888
	struct hstate *h = hstate_inode(inode);
2889
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2890 2891

	spin_lock(&inode->i_lock);
2892
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2893 2894
	spin_unlock(&inode->i_lock);

2895
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2896
	hugetlb_acct_memory(h, -(chg - freed));
2897
}
2898

2899 2900
#ifdef CONFIG_MEMORY_FAILURE

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

2915 2916 2917 2918
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
2919
int dequeue_hwpoisoned_huge_page(struct page *hpage)
2920 2921 2922
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
2923
	int ret = -EBUSY;
2924 2925

	spin_lock(&hugetlb_lock);
2926 2927
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
2928
		set_page_refcounted(hpage);
2929 2930 2931 2932
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
2933
	spin_unlock(&hugetlb_lock);
2934
	return ret;
2935
}
2936
#endif