hugetlb.c 58.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20

D
David Gibson 已提交
21 22
#include <asm/page.h>
#include <asm/pgtable.h>
23
#include <asm/io.h>
D
David Gibson 已提交
24 25

#include <linux/hugetlb.h>
26
#include "internal.h"
L
Linus Torvalds 已提交
27 28

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29 30
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
31

32 33 34 35
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

36 37
__initdata LIST_HEAD(huge_boot_pages);

38 39 40
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
41
static unsigned long __initdata default_hstate_size;
42 43 44

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45

46 47 48 49
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
50

51 52 53
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
54 55 56 57 58 59 60 61 62 63
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

210 211 212 213
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
214 215
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
216
{
217 218
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
219 220
}

221 222 223 224 225 226 227
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
228
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229

230 231 232 233 234 235 236 237 238
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
239 240 241 242 243 244 245 246 247
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
248
 */
249 250 251 252 253 254 255 256 257 258 259
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

260 261 262 263 264
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

265
static struct resv_map *resv_map_alloc(void)
266 267 268 269 270 271 272 273 274 275 276
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

277
static void resv_map_release(struct kref *ref)
278 279 280 281 282 283 284 285 286
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
287 288 289
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
290 291
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
292
	return NULL;
293 294
}

295
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
296 297 298 299
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

300 301
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
302 303 304 305 306
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
307 308 309
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310 311 312 313 314
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
315 316

	return (get_vma_private_data(vma) & flag) != 0;
317 318 319
}

/* Decrement the reserved pages in the hugepage pool by one */
320 321
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
322
{
323 324 325
	if (vma->vm_flags & VM_NORESERVE)
		return;

326 327
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
328
		h->resv_huge_pages--;
329
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
330 331 332 333
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
334
		h->resv_huge_pages--;
335 336 337
	}
}

338
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 340 341 342 343 344 345 346
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
347
static int vma_has_reserves(struct vm_area_struct *vma)
348 349
{
	if (vma->vm_flags & VM_SHARED)
350 351 352 353
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
354 355
}

356 357
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
358 359 360 361
{
	int i;

	might_sleep();
362
	for (i = 0; i < sz/PAGE_SIZE; i++) {
363
		cond_resched();
364
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
365 366 367 368
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
369
			   unsigned long addr, struct vm_area_struct *vma)
370 371
{
	int i;
372
	struct hstate *h = hstate_vma(vma);
373 374

	might_sleep();
375
	for (i = 0; i < pages_per_huge_page(h); i++) {
376
		cond_resched();
377
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
378 379 380
	}
}

381
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
382 383
{
	int nid = page_to_nid(page);
384 385 386
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
387 388
}

389
static struct page *dequeue_huge_page(struct hstate *h)
390 391 392 393 394
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
395 396
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
397 398
					  struct page, lru);
			list_del(&page->lru);
399 400
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
401 402 403 404 405 406
			break;
		}
	}
	return page;
}

407 408
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
409
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
410
{
411
	int nid;
L
Linus Torvalds 已提交
412
	struct page *page = NULL;
413
	struct mempolicy *mpol;
414
	nodemask_t *nodemask;
415
	struct zonelist *zonelist = huge_zonelist(vma, address,
416
					htlb_alloc_mask, &mpol, &nodemask);
417 418
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
419

420 421 422 423 424
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
425
	if (!vma_has_reserves(vma) &&
426
			h->free_huge_pages - h->resv_huge_pages == 0)
427 428
		return NULL;

429
	/* If reserves cannot be used, ensure enough pages are in the pool */
430
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
431 432
		return NULL;

433 434
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
435 436
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
437 438
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
439 440
					  struct page, lru);
			list_del(&page->lru);
441 442
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
443 444

			if (!avoid_reserve)
445
				decrement_hugepage_resv_vma(h, vma);
446

K
Ken Chen 已提交
447
			break;
A
Andrew Morton 已提交
448
		}
L
Linus Torvalds 已提交
449
	}
450
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
451 452 453
	return page;
}

454
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
455 456
{
	int i;
457 458 459 460

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
461 462 463 464 465 466
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
467
	arch_release_hugepage(page);
468
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
469 470
}

471 472 473 474 475 476 477 478 479 480 481
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

482 483
static void free_huge_page(struct page *page)
{
484 485 486 487
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
488
	struct hstate *h = page_hstate(page);
489
	int nid = page_to_nid(page);
490
	struct address_space *mapping;
491

492
	mapping = (struct address_space *) page_private(page);
493
	set_page_private(page, 0);
494
	BUG_ON(page_count(page));
495 496 497
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
498
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
499 500 501
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
502
	} else {
503
		enqueue_huge_page(h, page);
504
	}
505
	spin_unlock(&hugetlb_lock);
506
	if (mapping)
507
		hugetlb_put_quota(mapping, 1);
508 509
}

510 511 512 513 514
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
515
static int adjust_pool_surplus(struct hstate *h, int delta)
516 517 518 519 520 521 522 523 524 525 526 527
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
528
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
529 530
			continue;
		/* Surplus cannot exceed the total number of pages */
531 532
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
533 534
			continue;

535 536
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
537 538 539 540 541 542 543 544
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

545
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
546 547 548
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
549 550
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
551 552 553 554
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

555
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
556 557
{
	struct page *page;
558

559 560 561
	if (h->order >= MAX_ORDER)
		return NULL;

562
	page = alloc_pages_node(nid,
563 564
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
565
		huge_page_order(h));
L
Linus Torvalds 已提交
566
	if (page) {
567
		if (arch_prepare_hugepage(page)) {
568
			__free_pages(page, huge_page_order(h));
569
			return NULL;
570
		}
571
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
572
	}
573 574 575 576

	return page;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

598
static int alloc_fresh_huge_page(struct hstate *h)
599 600 601 602 603 604
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

605
	start_nid = h->hugetlb_next_nid;
606 607

	do {
608
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
609 610
		if (page)
			ret = 1;
611
		next_nid = hstate_next_node(h);
612
	} while (!page && h->hugetlb_next_nid != start_nid);
613

614 615 616 617 618
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

619
	return ret;
L
Linus Torvalds 已提交
620 621
}

622 623
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
624 625
{
	struct page *page;
626
	unsigned int nid;
627

628 629 630
	if (h->order >= MAX_ORDER)
		return NULL;

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
655
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
656 657 658
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
659 660
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
661 662 663
	}
	spin_unlock(&hugetlb_lock);

664 665
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
666
					huge_page_order(h));
667

668 669 670 671 672
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

673
	spin_lock(&hugetlb_lock);
674
	if (page) {
675 676 677 678 679 680
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
681
		nid = page_to_nid(page);
682
		set_compound_page_dtor(page, free_huge_page);
683 684 685
		/*
		 * We incremented the global counters already
		 */
686 687
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
688
		__count_vm_event(HTLB_BUDDY_PGALLOC);
689
	} else {
690 691
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
692
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693
	}
694
	spin_unlock(&hugetlb_lock);
695 696 697 698

	return page;
}

699 700 701 702
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
703
static int gather_surplus_pages(struct hstate *h, int delta)
704 705 706 707 708 709
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

710
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
711
	if (needed <= 0) {
712
		h->resv_huge_pages += delta;
713
		return 0;
714
	}
715 716 717 718 719 720 721 722

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
723
		page = alloc_buddy_huge_page(h, NULL, 0);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
744 745
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
746 747 748 749 750 751 752
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
753 754 755
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
756 757
	 */
	needed += allocated;
758
	h->resv_huge_pages += delta;
759 760
	ret = 0;
free:
761
	/* Free the needed pages to the hugetlb pool */
762
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
763 764
		if ((--needed) < 0)
			break;
765
		list_del(&page->lru);
766
		enqueue_huge_page(h, page);
767 768 769 770 771 772 773
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
774
			/*
775 776 777
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
778 779 780
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
781
			free_huge_page(page);
782
		}
783
		spin_lock(&hugetlb_lock);
784 785 786 787 788 789 790 791 792 793
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
794 795
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
796 797 798 799 800
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

801 802 803 804 805 806 807 808
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

809
	/* Uncommit the reservation */
810
	h->resv_huge_pages -= unused_resv_pages;
811

812 813 814 815
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

816
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
817

818
	while (remaining_iterations-- && nr_pages) {
819 820 821 822
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

823
		if (!h->surplus_huge_pages_node[nid])
824 825
			continue;

826 827
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
828 829
					  struct page, lru);
			list_del(&page->lru);
830 831 832 833 834
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
835
			nr_pages--;
836
			remaining_iterations = num_online_nodes();
837 838 839 840
		}
	}
}

841 842 843 844 845 846 847 848 849
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
850 851
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
852 853 854 855 856
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
857
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858 859 860
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

861 862
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
863

864 865
	} else  {
		int err;
866
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
867 868 869 870 871 872 873
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
874
}
875 876
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
877 878 879 880 881
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
882
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
883
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
884 885

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
886
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
887 888 889 890
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
891 892 893
	}
}

894
static struct page *alloc_huge_page(struct vm_area_struct *vma,
895
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
896
{
897
	struct hstate *h = hstate_vma(vma);
898
	struct page *page;
899 900
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
901
	unsigned int chg;
902 903 904 905 906

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
907 908
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
909
	 */
910
	chg = vma_needs_reservation(h, vma, addr);
911 912 913
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
914 915
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
916 917

	spin_lock(&hugetlb_lock);
918
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
919
	spin_unlock(&hugetlb_lock);
920

K
Ken Chen 已提交
921
	if (!page) {
922
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
923
		if (!page) {
924
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
925 926 927
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
928

929 930
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
931

932
	vma_commit_reservation(h, vma, addr);
933

934
	return page;
935 936
}

937
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

987
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
988 989
{
	unsigned long i;
990

991
	for (i = 0; i < h->max_huge_pages; ++i) {
992 993 994 995
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
996 997
			break;
	}
998
	h->max_huge_pages = i;
999 1000 1001 1002 1003 1004 1005
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1006 1007 1008
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1009 1010 1011
	}
}

A
Andi Kleen 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1023 1024 1025 1026 1027
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1028 1029 1030 1031 1032
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1033 1034 1035
	}
}

L
Linus Torvalds 已提交
1036
#ifdef CONFIG_HIGHMEM
1037
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1038
{
1039 1040
	int i;

1041 1042 1043
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1044 1045
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1046 1047 1048
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1049
				return;
L
Linus Torvalds 已提交
1050 1051 1052
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1053
			update_and_free_page(h, page);
1054 1055
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1056 1057 1058 1059
		}
	}
}
#else
1060
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1061 1062 1063 1064
{
}
#endif

1065
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1066
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1067
{
1068
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1069

1070 1071 1072
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1073 1074 1075 1076
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1077 1078 1079 1080 1081 1082
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1083
	 */
L
Linus Torvalds 已提交
1084
	spin_lock(&hugetlb_lock);
1085 1086
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1087 1088 1089
			break;
	}

1090
	while (count > persistent_huge_pages(h)) {
1091 1092 1093 1094 1095 1096
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1097
		ret = alloc_fresh_huge_page(h);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1110 1111 1112 1113 1114 1115 1116 1117
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1118
	 */
1119
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1120
	min_count = max(count, min_count);
1121 1122 1123
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1124 1125
		if (!page)
			break;
1126
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1127
	}
1128 1129
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1130 1131 1132
			break;
	}
out:
1133
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1134
	spin_unlock(&hugetlb_lock);
1135
	return ret;
L
Linus Torvalds 已提交
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1291 1292 1293 1294 1295 1296
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1297

1298 1299 1300 1301
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1302
	}
1303 1304 1305
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1306 1307 1308

	hugetlb_init_hstates();

1309 1310
	gather_bootmem_prealloc();

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1323 1324
	unsigned long i;

1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1334 1335 1336 1337 1338
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1339 1340
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1341

1342 1343 1344
	parsed_hstate = h;
}

1345
static int __init hugetlb_nrpages_setup(char *s)
1346 1347
{
	unsigned long *mhp;
1348
	static unsigned long *last_mhp;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1359 1360 1361 1362 1363 1364
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1365 1366 1367
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1378 1379
	return 1;
}
1380 1381 1382 1383 1384 1385 1386 1387
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1401 1402 1403 1404
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1405 1406 1407 1408 1409 1410 1411 1412
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1413
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1414 1415 1416 1417

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1418 1419
	return 0;
}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1433 1434 1435 1436
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1437
	struct hstate *h = &default_hstate;
1438 1439 1440 1441 1442 1443 1444
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1445
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1446 1447 1448 1449 1450 1451 1452

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1453 1454 1455
	return 0;
}

L
Linus Torvalds 已提交
1456 1457 1458 1459
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
1460
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1461
	return sprintf(buf,
1462 1463 1464 1465 1466
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1467 1468 1469 1470 1471
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1472 1473 1474 1475
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1476
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1477 1478
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1479 1480
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1481 1482 1483
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1489 1490
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1491 1492
}

1493
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1516
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1517 1518
			goto out;

1519 1520
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1521 1522 1523 1524 1525 1526
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1527
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1528 1529 1530 1531 1532 1533

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1550 1551
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1552
	struct hstate *h = hstate_vma(vma);
1553 1554 1555 1556 1557 1558
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1559 1560
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1561 1562 1563 1564 1565 1566

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1567
		if (reserve) {
1568
			hugetlb_acct_memory(h, -reserve);
1569 1570
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1571
	}
1572 1573
}

L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1580
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1581 1582
{
	BUG();
N
Nick Piggin 已提交
1583
	return 0;
L
Linus Torvalds 已提交
1584 1585 1586
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1587
	.fault = hugetlb_vm_op_fault,
1588
	.open = hugetlb_vm_op_open,
1589
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1590 1591
};

1592 1593
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1594 1595 1596
{
	pte_t entry;

1597
	if (writable) {
D
David Gibson 已提交
1598 1599 1600
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1601
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1602 1603 1604 1605 1606 1607 1608
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1609 1610 1611 1612 1613
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1614 1615
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1616 1617
		update_mmu_cache(vma, address, entry);
	}
1618 1619 1620
}


D
David Gibson 已提交
1621 1622 1623 1624 1625
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1626
	unsigned long addr;
1627
	int cow;
1628 1629
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1630 1631

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1632

1633
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1634 1635 1636
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1637
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1638 1639
		if (!dst_pte)
			goto nomem;
1640 1641 1642 1643 1644

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1645
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1646
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1647
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1648
			if (cow)
1649 1650
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1651 1652 1653 1654 1655
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1656
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1657 1658 1659 1660 1661 1662 1663
	}
	return 0;

nomem:
	return -ENOMEM;
}

1664
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1665
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1666 1667 1668
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1669
	pte_t *ptep;
D
David Gibson 已提交
1670 1671
	pte_t pte;
	struct page *page;
1672
	struct page *tmp;
1673 1674 1675
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1676 1677 1678 1679 1680
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1681
	LIST_HEAD(page_list);
D
David Gibson 已提交
1682 1683

	WARN_ON(!is_vm_hugetlb_page(vma));
1684 1685
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1686

A
Andrea Arcangeli 已提交
1687
	mmu_notifier_invalidate_range_start(mm, start, end);
1688
	spin_lock(&mm->page_table_lock);
1689
	for (address = start; address < end; address += sz) {
1690
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1691
		if (!ptep)
1692 1693
			continue;

1694 1695 1696
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1718
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1719
		if (huge_pte_none(pte))
D
David Gibson 已提交
1720
			continue;
1721

D
David Gibson 已提交
1722
		page = pte_page(pte);
1723 1724
		if (pte_dirty(pte))
			set_page_dirty(page);
1725
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1726
	}
L
Linus Torvalds 已提交
1727
	spin_unlock(&mm->page_table_lock);
1728
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1729
	mmu_notifier_invalidate_range_end(mm, start, end);
1730 1731 1732 1733
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1734
}
D
David Gibson 已提交
1735

1736
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1737
			  unsigned long end, struct page *ref_page)
1738
{
1739 1740 1741
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1742 1743
}

1744 1745 1746 1747 1748 1749
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1750 1751
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1788
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1789 1790
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1791
{
1792
	struct hstate *h = hstate_vma(vma);
1793
	struct page *old_page, *new_page;
1794
	int avoidcopy;
1795
	int outside_reserve = 0;
1796 1797 1798

	old_page = pte_page(pte);

1799
retry_avoidcopy:
1800 1801 1802 1803 1804
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1805
		return 0;
1806 1807
	}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1822
	page_cache_get(old_page);
1823
	new_page = alloc_huge_page(vma, address, outside_reserve);
1824

1825
	if (IS_ERR(new_page)) {
1826
		page_cache_release(old_page);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1845
		return -PTR_ERR(new_page);
1846 1847 1848
	}

	spin_unlock(&mm->page_table_lock);
1849
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1850
	__SetPageUptodate(new_page);
1851 1852
	spin_lock(&mm->page_table_lock);

1853
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1854
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1855
		/* Break COW */
1856
		huge_ptep_clear_flush(vma, address, ptep);
1857 1858 1859 1860 1861 1862 1863
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1864
	return 0;
1865 1866
}

1867
/* Return the pagecache page at a given address within a VMA */
1868 1869
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1870 1871
{
	struct address_space *mapping;
1872
	pgoff_t idx;
1873 1874

	mapping = vma->vm_file->f_mapping;
1875
	idx = vma_hugecache_offset(h, vma, address);
1876 1877 1878 1879

	return find_lock_page(mapping, idx);
}

1880
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1881
			unsigned long address, pte_t *ptep, int write_access)
1882
{
1883
	struct hstate *h = hstate_vma(vma);
1884
	int ret = VM_FAULT_SIGBUS;
1885
	pgoff_t idx;
A
Adam Litke 已提交
1886 1887 1888
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1889
	pte_t new_pte;
A
Adam Litke 已提交
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1903
	mapping = vma->vm_file->f_mapping;
1904
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1905 1906 1907 1908 1909

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1910 1911 1912
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1913
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1914 1915
		if (idx >= size)
			goto out;
1916
		page = alloc_huge_page(vma, address, 0);
1917 1918
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1919 1920
			goto out;
		}
1921
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1922
		__SetPageUptodate(page);
1923

1924 1925
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1926
			struct inode *inode = mapping->host;
1927 1928 1929 1930 1931 1932 1933 1934

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1935 1936

			spin_lock(&inode->i_lock);
1937
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1938
			spin_unlock(&inode->i_lock);
1939 1940 1941
		} else
			lock_page(page);
	}
1942

1943 1944 1945 1946 1947 1948 1949
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
1950 1951 1952 1953
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
1954

1955
	spin_lock(&mm->page_table_lock);
1956
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1957 1958 1959
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1960
	ret = 0;
1961
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1962 1963
		goto backout;

1964 1965 1966 1967 1968 1969
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1970
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1971 1972
	}

1973
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1974 1975
	unlock_page(page);
out:
1976
	return ret;
A
Adam Litke 已提交
1977 1978 1979

backout:
	spin_unlock(&mm->page_table_lock);
1980
backout_unlocked:
A
Adam Litke 已提交
1981 1982 1983
	unlock_page(page);
	put_page(page);
	goto out;
1984 1985
}

1986 1987 1988 1989 1990
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1991
	int ret;
1992
	struct page *pagecache_page = NULL;
1993
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1994
	struct hstate *h = hstate_vma(vma);
1995

1996
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1997 1998 1999
	if (!ptep)
		return VM_FAULT_OOM;

2000 2001 2002 2003 2004 2005
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2006 2007
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2008
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2009
		goto out_mutex;
2010
	}
2011

N
Nick Piggin 已提交
2012
	ret = 0;
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2023 2024
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2025
			goto out_mutex;
2026
		}
2027 2028 2029 2030 2031 2032

		if (!(vma->vm_flags & VM_SHARED))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2033 2034
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2035 2036 2037 2038 2039 2040
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2041 2042
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2043 2044 2045 2046 2047 2048 2049 2050 2051
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2052
	spin_unlock(&mm->page_table_lock);
2053 2054 2055 2056 2057 2058

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2059
out_mutex:
2060
	mutex_unlock(&hugetlb_instantiation_mutex);
2061 2062

	return ret;
2063 2064
}

A
Andi Kleen 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2074 2075 2076 2077 2078 2079 2080 2081
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2082 2083
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2084 2085
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2086
{
2087 2088
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2089
	int remainder = *length;
2090
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2091 2092
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2093

2094
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2095
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2096 2097
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2098

A
Adam Litke 已提交
2099 2100 2101 2102 2103
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2104
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2105 2106
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2107

K
KOSAKI Motohiro 已提交
2108 2109
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2110
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2111
			int ret;
D
David Gibson 已提交
2112

A
Adam Litke 已提交
2113
			spin_unlock(&mm->page_table_lock);
2114
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2115
			spin_lock(&mm->page_table_lock);
2116
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2117
				continue;
D
David Gibson 已提交
2118

A
Adam Litke 已提交
2119 2120 2121 2122 2123 2124
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2125
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2126
		page = pte_page(huge_ptep_get(pte));
2127
same_page:
2128
		if (pages) {
K
KOSAKI Motohiro 已提交
2129 2130 2131 2132 2133
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
				pages[i] = page + pfn_offset;
			get_page(pages[i]);
2134
		}
D
David Gibson 已提交
2135 2136 2137 2138 2139

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2140
		++pfn_offset;
D
David Gibson 已提交
2141 2142
		--remainder;
		++i;
2143
		if (vaddr < vma->vm_end && remainder &&
2144
				pfn_offset < pages_per_huge_page(h)) {
2145 2146 2147 2148 2149 2150
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2151
	}
2152
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2153 2154 2155 2156 2157
	*length = remainder;
	*position = vaddr;

	return i;
}
2158 2159 2160 2161 2162 2163 2164 2165

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2166
	struct hstate *h = hstate_vma(vma);
2167 2168 2169 2170

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2171
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2172
	spin_lock(&mm->page_table_lock);
2173
	for (; address < end; address += huge_page_size(h)) {
2174 2175 2176
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2177 2178
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2179
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2180 2181 2182 2183 2184 2185
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2186
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2187 2188 2189 2190

	flush_tlb_range(vma, start, end);
}

2191 2192 2193
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2194 2195
{
	long ret, chg;
2196
	struct hstate *h = hstate_inode(inode);
2197

2198 2199 2200
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2210 2211 2212 2213
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2214
		chg = to - from;
2215 2216

		set_vma_resv_map(vma, resv_map);
2217
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2218 2219
	}

2220 2221
	if (chg < 0)
		return chg;
2222

2223 2224
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2225
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2226 2227
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2228
		return ret;
K
Ken Chen 已提交
2229
	}
2230 2231
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2232 2233 2234 2235 2236
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2237
	struct hstate *h = hstate_inode(inode);
2238
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2239 2240

	spin_lock(&inode->i_lock);
2241
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2242 2243
	spin_unlock(&inode->i_lock);

2244
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2245
	hugetlb_acct_memory(h, -(chg - freed));
2246
}