alarmtimer.c 22.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Alarmtimer interface
 *
 * This interface provides a timer which is similarto hrtimers,
 * but triggers a RTC alarm if the box is suspend.
 *
 * This interface is influenced by the Android RTC Alarm timer
 * interface.
 *
 * Copyright (C) 2010 IBM Corperation
 *
 * Author: John Stultz <john.stultz@linaro.org>
 */
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
19
#include <linux/sched/signal.h>
20
#include <linux/sched/debug.h>
21 22 23 24 25 26
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>
27
#include <linux/compat.h>
28
#include <linux/module.h>
29

30 31
#include "posix-timers.h"

32 33 34
#define CREATE_TRACE_POINTS
#include <trace/events/alarmtimer.h>

35 36 37 38 39 40 41
/**
 * struct alarm_base - Alarm timer bases
 * @lock:		Lock for syncrhonized access to the base
 * @timerqueue:		Timerqueue head managing the list of events
 * @gettime:		Function to read the time correlating to the base
 * @base_clockid:	clockid for the base
 */
42 43 44 45 46 47 48
static struct alarm_base {
	spinlock_t		lock;
	struct timerqueue_head	timerqueue;
	ktime_t			(*gettime)(void);
	clockid_t		base_clockid;
} alarm_bases[ALARM_NUMTYPE];

49
#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50 51 52
/* freezer information to handle clock_nanosleep triggered wakeups */
static enum alarmtimer_type freezer_alarmtype;
static ktime_t freezer_expires;
53 54
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);
55
#endif
56

57
#ifdef CONFIG_RTC_CLASS
58 59
static struct wakeup_source *ws;

60
/* rtc timer and device for setting alarm wakeups at suspend */
61
static struct rtc_timer		rtctimer;
62
static struct rtc_device	*rtcdev;
63
static DEFINE_SPINLOCK(rtcdev_lock);
64

65 66 67 68 69 70 71
/**
 * alarmtimer_get_rtcdev - Return selected rtcdevice
 *
 * This function returns the rtc device to use for wakealarms.
 * If one has not already been chosen, it checks to see if a
 * functional rtc device is available.
 */
72
struct rtc_device *alarmtimer_get_rtcdev(void)
73 74 75 76 77 78 79 80 81 82
{
	unsigned long flags;
	struct rtc_device *ret;

	spin_lock_irqsave(&rtcdev_lock, flags);
	ret = rtcdev;
	spin_unlock_irqrestore(&rtcdev_lock, flags);

	return ret;
}
83
EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84 85 86 87 88 89

static int alarmtimer_rtc_add_device(struct device *dev,
				struct class_interface *class_intf)
{
	unsigned long flags;
	struct rtc_device *rtc = to_rtc_device(dev);
90
	struct wakeup_source *__ws;
91 92 93 94 95 96 97 98 99

	if (rtcdev)
		return -EBUSY;

	if (!rtc->ops->set_alarm)
		return -1;
	if (!device_may_wakeup(rtc->dev.parent))
		return -1;

100 101
	__ws = wakeup_source_register("alarmtimer");

102 103
	spin_lock_irqsave(&rtcdev_lock, flags);
	if (!rtcdev) {
104 105 106 107 108
		if (!try_module_get(rtc->owner)) {
			spin_unlock_irqrestore(&rtcdev_lock, flags);
			return -1;
		}

109 110 111
		rtcdev = rtc;
		/* hold a reference so it doesn't go away */
		get_device(dev);
112 113
		ws = __ws;
		__ws = NULL;
114 115
	}
	spin_unlock_irqrestore(&rtcdev_lock, flags);
116 117 118

	wakeup_source_unregister(__ws);

119 120 121
	return 0;
}

122 123 124 125 126
static inline void alarmtimer_rtc_timer_init(void)
{
	rtc_timer_init(&rtctimer, NULL, NULL);
}

127 128 129 130
static struct class_interface alarmtimer_rtc_interface = {
	.add_dev = &alarmtimer_rtc_add_device,
};

131
static int alarmtimer_rtc_interface_setup(void)
132 133
{
	alarmtimer_rtc_interface.class = rtc_class;
134 135 136 137 138
	return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
	class_interface_unregister(&alarmtimer_rtc_interface);
139
}
140
#else
141
struct rtc_device *alarmtimer_get_rtcdev(void)
142 143 144 145 146 147
{
	return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
148
static inline void alarmtimer_rtc_timer_init(void) { }
149
#endif
150

151
/**
152 153 154 155
 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 * @base: pointer to the base where the timer is being run
 * @alarm: pointer to alarm being enqueued.
 *
156
 * Adds alarm to a alarm_base timerqueue
157 158 159 160 161
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
162 163 164
	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
		timerqueue_del(&base->timerqueue, &alarm->node);

165
	timerqueue_add(&base->timerqueue, &alarm->node);
166
	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 168
}

169
/**
170
 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 172 173
 * @base: pointer to the base where the timer is running
 * @alarm: pointer to alarm being removed
 *
174
 * Removes alarm to a alarm_base timerqueue
175 176 177
 *
 * Must hold base->lock when calling.
 */
178
static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179
{
180 181 182
	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
		return;

183
	timerqueue_del(&base->timerqueue, &alarm->node);
184
	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 186
}

187

188
/**
189 190
 * alarmtimer_fired - Handles alarm hrtimer being fired.
 * @timer: pointer to hrtimer being run
191
 *
192 193 194 195
 * When a alarm timer fires, this runs through the timerqueue to
 * see which alarms expired, and runs those. If there are more alarm
 * timers queued for the future, we set the hrtimer to fire when
 * when the next future alarm timer expires.
196
 */
197
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198
{
199 200
	struct alarm *alarm = container_of(timer, struct alarm, timer);
	struct alarm_base *base = &alarm_bases[alarm->type];
201
	unsigned long flags;
202
	int ret = HRTIMER_NORESTART;
203
	int restart = ALARMTIMER_NORESTART;
204 205

	spin_lock_irqsave(&base->lock, flags);
206
	alarmtimer_dequeue(base, alarm);
207
	spin_unlock_irqrestore(&base->lock, flags);
208

209 210
	if (alarm->function)
		restart = alarm->function(alarm, base->gettime());
211

212 213 214 215
	spin_lock_irqsave(&base->lock, flags);
	if (restart != ALARMTIMER_NORESTART) {
		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
		alarmtimer_enqueue(base, alarm);
216
		ret = HRTIMER_RESTART;
217 218 219
	}
	spin_unlock_irqrestore(&base->lock, flags);

220
	trace_alarmtimer_fired(alarm, base->gettime());
221
	return ret;
222 223 224

}

225 226 227 228 229
ktime_t alarm_expires_remaining(const struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	return ktime_sub(alarm->node.expires, base->gettime());
}
230
EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231

232
#ifdef CONFIG_RTC_CLASS
233
/**
234 235 236 237 238 239 240 241 242 243 244
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
245 246
	ktime_t min, now, expires;
	int i, ret, type;
247
	struct rtc_device *rtc;
248 249
	unsigned long flags;
	struct rtc_time tm;
250 251 252

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
253 254
	expires = freezer_expires;
	type = freezer_alarmtype;
T
Thomas Gleixner 已提交
255
	freezer_delta = 0;
256 257
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

258
	rtc = alarmtimer_get_rtcdev();
259
	/* If we have no rtcdev, just return */
260
	if (!rtc)
261 262 263 264 265 266 267 268 269 270 271 272 273 274
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
T
Thomas Gleixner 已提交
275
		if (!min || (delta < min)) {
276
			expires = next->expires;
277
			min = delta;
278 279
			type = i;
		}
280
	}
T
Thomas Gleixner 已提交
281
	if (min == 0)
282 283
		return 0;

284 285 286 287
	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
		return -EBUSY;
	}
288

289 290
	trace_alarmtimer_suspend(expires, type);

291
	/* Setup an rtc timer to fire that far in the future */
292 293
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
294 295 296
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

297
	/* Set alarm, if in the past reject suspend briefly to handle */
T
Thomas Gleixner 已提交
298
	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
299 300 301
	if (ret < 0)
		__pm_wakeup_event(ws, MSEC_PER_SEC);
	return ret;
302
}
303 304 305 306 307 308 309 310 311 312 313

static int alarmtimer_resume(struct device *dev)
{
	struct rtc_device *rtc;

	rtc = alarmtimer_get_rtcdev();
	if (rtc)
		rtc_timer_cancel(rtc, &rtctimer);
	return 0;
}

314 315 316 317 318
#else
static int alarmtimer_suspend(struct device *dev)
{
	return 0;
}
319 320 321 322 323

static int alarmtimer_resume(struct device *dev)
{
	return 0;
}
324
#endif
325

326 327 328 329 330 331 332 333 334 335 336
static void
__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
{
	timerqueue_init(&alarm->node);
	alarm->timer.function = alarmtimer_fired;
	alarm->function = function;
	alarm->type = type;
	alarm->state = ALARMTIMER_STATE_INACTIVE;
}

337
/**
338 339 340 341 342 343
 * alarm_init - Initialize an alarm structure
 * @alarm: ptr to alarm to be initialized
 * @type: the type of the alarm
 * @function: callback that is run when the alarm fires
 */
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
344
		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
345
{
346
	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
347 348
		     HRTIMER_MODE_ABS);
	__alarm_init(alarm, type, function);
349
}
350
EXPORT_SYMBOL_GPL(alarm_init);
351

352
/**
353
 * alarm_start - Sets an absolute alarm to fire
354 355 356
 * @alarm: ptr to alarm to set
 * @start: time to run the alarm
 */
357
void alarm_start(struct alarm *alarm, ktime_t start)
358 359 360 361 362 363 364
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;

	spin_lock_irqsave(&base->lock, flags);
	alarm->node.expires = start;
	alarmtimer_enqueue(base, alarm);
365
	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
366
	spin_unlock_irqrestore(&base->lock, flags);
367 368

	trace_alarmtimer_start(alarm, base->gettime());
369
}
370
EXPORT_SYMBOL_GPL(alarm_start);
371

372 373 374 375 376
/**
 * alarm_start_relative - Sets a relative alarm to fire
 * @alarm: ptr to alarm to set
 * @start: time relative to now to run the alarm
 */
377
void alarm_start_relative(struct alarm *alarm, ktime_t start)
378 379 380
{
	struct alarm_base *base = &alarm_bases[alarm->type];

381
	start = ktime_add_safe(start, base->gettime());
382
	alarm_start(alarm, start);
383
}
384
EXPORT_SYMBOL_GPL(alarm_start_relative);
385 386 387 388 389 390 391 392 393 394 395 396

void alarm_restart(struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;

	spin_lock_irqsave(&base->lock, flags);
	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
	hrtimer_restart(&alarm->timer);
	alarmtimer_enqueue(base, alarm);
	spin_unlock_irqrestore(&base->lock, flags);
}
397
EXPORT_SYMBOL_GPL(alarm_restart);
398

399
/**
400
 * alarm_try_to_cancel - Tries to cancel an alarm timer
401
 * @alarm: ptr to alarm to be canceled
402 403 404
 *
 * Returns 1 if the timer was canceled, 0 if it was not running,
 * and -1 if the callback was running
405
 */
406
int alarm_try_to_cancel(struct alarm *alarm)
407 408 409
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
410
	int ret;
411

412 413 414
	spin_lock_irqsave(&base->lock, flags);
	ret = hrtimer_try_to_cancel(&alarm->timer);
	if (ret >= 0)
415
		alarmtimer_dequeue(base, alarm);
416
	spin_unlock_irqrestore(&base->lock, flags);
417 418

	trace_alarmtimer_cancel(alarm, base->gettime());
419
	return ret;
420
}
421
EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
422 423


424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 * @alarm: ptr to alarm to be canceled
 *
 * Returns 1 if the timer was canceled, 0 if it was not active.
 */
int alarm_cancel(struct alarm *alarm)
{
	for (;;) {
		int ret = alarm_try_to_cancel(alarm);
		if (ret >= 0)
			return ret;
		cpu_relax();
	}
}
439
EXPORT_SYMBOL_GPL(alarm_cancel);
440

441 442 443 444 445 446 447 448

u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
	u64 overrun = 1;
	ktime_t delta;

	delta = ktime_sub(now, alarm->node.expires);

T
Thomas Gleixner 已提交
449
	if (delta < 0)
450 451
		return 0;

T
Thomas Gleixner 已提交
452
	if (unlikely(delta >= interval)) {
453 454 455 456 457 458 459
		s64 incr = ktime_to_ns(interval);

		overrun = ktime_divns(delta, incr);

		alarm->node.expires = ktime_add_ns(alarm->node.expires,
							incr*overrun);

T
Thomas Gleixner 已提交
460
		if (alarm->node.expires > now)
461 462 463 464 465 466 467 468
			return overrun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		overrun++;
	}

469
	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
470 471
	return overrun;
}
472
EXPORT_SYMBOL_GPL(alarm_forward);
473

474 475 476 477 478 479
u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
	struct alarm_base *base = &alarm_bases[alarm->type];

	return alarm_forward(alarm, base->gettime(), interval);
}
480
EXPORT_SYMBOL_GPL(alarm_forward_now);
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
#ifdef CONFIG_POSIX_TIMERS

static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
	struct alarm_base *base;
	unsigned long flags;
	ktime_t delta;

	switch(type) {
	case ALARM_REALTIME:
		base = &alarm_bases[ALARM_REALTIME];
		type = ALARM_REALTIME_FREEZER;
		break;
	case ALARM_BOOTTIME:
		base = &alarm_bases[ALARM_BOOTTIME];
		type = ALARM_BOOTTIME_FREEZER;
		break;
	default:
		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
		return;
	}

	delta = ktime_sub(absexp, base->gettime());

	spin_lock_irqsave(&freezer_delta_lock, flags);
	if (!freezer_delta || (delta < freezer_delta)) {
		freezer_delta = delta;
		freezer_expires = absexp;
		freezer_alarmtype = type;
	}
	spin_unlock_irqrestore(&freezer_delta_lock, flags);
}
514

515
/**
516 517 518 519 520 521 522 523 524 525 526 527
 * clock2alarm - helper that converts from clockid to alarmtypes
 * @clockid: clockid.
 */
static enum alarmtimer_type clock2alarm(clockid_t clockid)
{
	if (clockid == CLOCK_REALTIME_ALARM)
		return ALARM_REALTIME;
	if (clockid == CLOCK_BOOTTIME_ALARM)
		return ALARM_BOOTTIME;
	return -1;
}

528
/**
529 530 531 532 533
 * alarm_handle_timer - Callback for posix timers
 * @alarm: alarm that fired
 *
 * Posix timer callback for expired alarm timers.
 */
534 535
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
							ktime_t now)
536 537
{
	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
538
					    it.alarm.alarmtimer);
539
	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
540 541
	unsigned long flags;
	int si_private = 0;
542 543

	spin_lock_irqsave(&ptr->it_lock, flags);
544

545 546 547 548 549 550 551 552 553 554 555 556
	ptr->it_active = 0;
	if (ptr->it_interval)
		si_private = ++ptr->it_requeue_pending;

	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
		/*
		 * Handle ignored signals and rearm the timer. This will go
		 * away once we handle ignored signals proper.
		 */
		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
		++ptr->it_requeue_pending;
		ptr->it_active = 1;
557
		result = ALARMTIMER_RESTART;
558
	}
559 560 561
	spin_unlock_irqrestore(&ptr->it_lock, flags);

	return result;
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575
/**
 * alarm_timer_rearm - Posix timer callback for rearming timer
 * @timr:	Pointer to the posixtimer data struct
 */
static void alarm_timer_rearm(struct k_itimer *timr)
{
	struct alarm *alarm = &timr->it.alarm.alarmtimer;

	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
	alarm_start(alarm, alarm->node.expires);
}

576 577 578 579 580
/**
 * alarm_timer_forward - Posix timer callback for forwarding timer
 * @timr:	Pointer to the posixtimer data struct
 * @now:	Current time to forward the timer against
 */
581
static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
582 583 584
{
	struct alarm *alarm = &timr->it.alarm.alarmtimer;

585
	return alarm_forward(alarm, timr->it_interval, now);
586 587
}

588 589 590 591 592 593 594 595 596
/**
 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
 * @timr:	Pointer to the posixtimer data struct
 * @now:	Current time to calculate against
 */
static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct alarm *alarm = &timr->it.alarm.alarmtimer;

597
	return ktime_sub(alarm->node.expires, now);
598 599
}

600 601 602 603 604 605 606 607 608
/**
 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
 * @timr:	Pointer to the posixtimer data struct
 */
static int alarm_timer_try_to_cancel(struct k_itimer *timr)
{
	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * alarm_timer_arm - Posix timer callback to arm a timer
 * @timr:	Pointer to the posixtimer data struct
 * @expires:	The new expiry time
 * @absolute:	Expiry value is absolute time
 * @sigev_none:	Posix timer does not deliver signals
 */
static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
			    bool absolute, bool sigev_none)
{
	struct alarm *alarm = &timr->it.alarm.alarmtimer;
	struct alarm_base *base = &alarm_bases[alarm->type];

	if (!absolute)
		expires = ktime_add_safe(expires, base->gettime());
	if (sigev_none)
		alarm->node.expires = expires;
	else
		alarm_start(&timr->it.alarm.alarmtimer, expires);
}

630
/**
631 632 633 634 635 636
 * alarm_clock_getres - posix getres interface
 * @which_clock: clockid
 * @tp: timespec to fill
 *
 * Returns the granularity of underlying alarm base clock
 */
637
static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
638
{
639
	if (!alarmtimer_get_rtcdev())
640
		return -EINVAL;
641

642 643 644
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
645 646 647 648 649 650 651 652 653
}

/**
 * alarm_clock_get - posix clock_get interface
 * @which_clock: clockid
 * @tp: timespec to fill.
 *
 * Provides the underlying alarm base time.
 */
654
static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
655 656 657
{
	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];

658
	if (!alarmtimer_get_rtcdev())
659
		return -EINVAL;
660

661
	*tp = ktime_to_timespec64(base->gettime());
662 663 664 665 666 667 668 669 670 671 672 673 674
	return 0;
}

/**
 * alarm_timer_create - posix timer_create interface
 * @new_timer: k_itimer pointer to manage
 *
 * Initializes the k_itimer structure.
 */
static int alarm_timer_create(struct k_itimer *new_timer)
{
	enum  alarmtimer_type type;

675 676 677
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

678 679 680 681
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	type = clock2alarm(new_timer->it_clock);
682
	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
683 684 685 686 687 688 689 690 691
	return 0;
}

/**
 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 * @alarm: ptr to alarm that fired
 *
 * Wakes up the task that set the alarmtimer
 */
692 693
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
								ktime_t now)
694 695 696 697 698 699
{
	struct task_struct *task = (struct task_struct *)alarm->data;

	alarm->data = NULL;
	if (task)
		wake_up_process(task);
700
	return ALARMTIMER_NORESTART;
701 702 703 704 705 706 707 708 709
}

/**
 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 * @alarm: ptr to alarmtimer
 * @absexp: absolute expiration time
 *
 * Sets the alarm timer and sleeps until it is fired or interrupted.
 */
710 711
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
				enum alarmtimer_type type)
712
{
713
	struct restart_block *restart;
714 715 716
	alarm->data = (void *)current;
	do {
		set_current_state(TASK_INTERRUPTIBLE);
717
		alarm_start(alarm, absexp);
718 719 720 721 722 723 724 725
		if (likely(alarm->data))
			schedule();

		alarm_cancel(alarm);
	} while (alarm->data && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

726 727
	destroy_hrtimer_on_stack(&alarm->timer);

728
	if (!alarm->data)
729 730
		return 0;

731 732
	if (freezing(current))
		alarmtimer_freezerset(absexp, type);
733 734
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
735
		struct timespec64 rmt;
736
		ktime_t rem;
737

738
		rem = ktime_sub(absexp, alarm_bases[type].gettime());
739

740 741
		if (rem <= 0)
			return 0;
742
		rmt = ktime_to_timespec64(rem);
743

744
		return nanosleep_copyout(restart, &rmt);
745 746
	}
	return -ERESTART_RESTARTBLOCK;
747 748
}

749 750 751 752 753 754 755 756 757
static void
alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
{
	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
			      HRTIMER_MODE_ABS);
	__alarm_init(alarm, type, function);
}

758 759 760 761 762 763 764 765
/**
 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 * @restart: ptr to restart block
 *
 * Handles restarted clock_nanosleep calls
 */
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
766
	enum  alarmtimer_type type = restart->nanosleep.clockid;
767
	ktime_t exp = restart->nanosleep.expires;
768 769
	struct alarm alarm;

770
	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
771

772
	return alarmtimer_do_nsleep(&alarm, exp, type);
773 774 775 776 777 778 779 780 781 782 783 784
}

/**
 * alarm_timer_nsleep - alarmtimer nanosleep
 * @which_clock: clockid
 * @flags: determins abstime or relative
 * @tsreq: requested sleep time (abs or rel)
 * @rmtp: remaining sleep time saved
 *
 * Handles clock_nanosleep calls against _ALARM clockids
 */
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
785
			      const struct timespec64 *tsreq)
786 787
{
	enum  alarmtimer_type type = clock2alarm(which_clock);
788
	struct restart_block *restart = &current->restart_block;
789 790 791 792
	struct alarm alarm;
	ktime_t exp;
	int ret = 0;

793 794 795
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

796 797 798
	if (flags & ~TIMER_ABSTIME)
		return -EINVAL;

799 800 801
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

802
	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
803

804
	exp = timespec64_to_ktime(*tsreq);
805 806 807
	/* Convert (if necessary) to absolute time */
	if (flags != TIMER_ABSTIME) {
		ktime_t now = alarm_bases[type].gettime();
808 809

		exp = ktime_add_safe(now, exp);
810 811
	}

812 813 814
	ret = alarmtimer_do_nsleep(&alarm, exp, type);
	if (ret != -ERESTART_RESTARTBLOCK)
		return ret;
815 816

	/* abs timers don't set remaining time or restart */
817 818
	if (flags == TIMER_ABSTIME)
		return -ERESTARTNOHAND;
819 820

	restart->fn = alarm_timer_nsleep_restart;
821
	restart->nanosleep.clockid = type;
T
Thomas Gleixner 已提交
822
	restart->nanosleep.expires = exp;
823 824
	return ret;
}
825

826
const struct k_clock alarm_clock = {
827 828 829
	.clock_getres		= alarm_clock_getres,
	.clock_get		= alarm_clock_get,
	.timer_create		= alarm_timer_create,
830 831 832
	.timer_set		= common_timer_set,
	.timer_del		= common_timer_del,
	.timer_get		= common_timer_get,
833
	.timer_arm		= alarm_timer_arm,
834 835 836
	.timer_rearm		= alarm_timer_rearm,
	.timer_forward		= alarm_timer_forward,
	.timer_remaining	= alarm_timer_remaining,
837
	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
838
	.nsleep			= alarm_timer_nsleep,
839 840 841
};
#endif /* CONFIG_POSIX_TIMERS */

842 843 844 845

/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
	.suspend = alarmtimer_suspend,
846
	.resume = alarmtimer_resume,
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
};

static struct platform_driver alarmtimer_driver = {
	.driver = {
		.name = "alarmtimer",
		.pm = &alarmtimer_pm_ops,
	}
};

/**
 * alarmtimer_init - Initialize alarm timer code
 *
 * This function initializes the alarm bases and registers
 * the posix clock ids.
 */
static int __init alarmtimer_init(void)
{
864
	struct platform_device *pdev;
865 866
	int error = 0;
	int i;
867

868
	alarmtimer_rtc_timer_init();
869

870 871 872 873 874 875 876 877 878
	/* Initialize alarm bases */
	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		timerqueue_init_head(&alarm_bases[i].timerqueue);
		spin_lock_init(&alarm_bases[i].lock);
	}
879

880 881 882 883
	error = alarmtimer_rtc_interface_setup();
	if (error)
		return error;

884
	error = platform_driver_register(&alarmtimer_driver);
885 886
	if (error)
		goto out_if;
887

888 889 890 891 892 893 894 895 896 897 898
	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
	if (IS_ERR(pdev)) {
		error = PTR_ERR(pdev);
		goto out_drv;
	}
	return 0;

out_drv:
	platform_driver_unregister(&alarmtimer_driver);
out_if:
	alarmtimer_rtc_interface_remove();
899 900 901
	return error;
}
device_initcall(alarmtimer_init);