alarmtimer.c 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Alarmtimer interface
 *
 * This interface provides a timer which is similarto hrtimers,
 * but triggers a RTC alarm if the box is suspend.
 *
 * This interface is influenced by the Android RTC Alarm timer
 * interface.
 *
 * Copyright (C) 2010 IBM Corperation
 *
 * Author: John Stultz <john.stultz@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>

29 30 31 32 33 34 35 36
/**
 * struct alarm_base - Alarm timer bases
 * @lock:		Lock for syncrhonized access to the base
 * @timerqueue:		Timerqueue head managing the list of events
 * @timer: 		hrtimer used to schedule events while running
 * @gettime:		Function to read the time correlating to the base
 * @base_clockid:	clockid for the base
 */
37 38 39 40 41 42 43
static struct alarm_base {
	spinlock_t		lock;
	struct timerqueue_head	timerqueue;
	ktime_t			(*gettime)(void);
	clockid_t		base_clockid;
} alarm_bases[ALARM_NUMTYPE];

44 45 46 47
/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);

48 49
static struct wakeup_source *ws;

50
#ifdef CONFIG_RTC_CLASS
51
/* rtc timer and device for setting alarm wakeups at suspend */
52
static struct rtc_timer		rtctimer;
53
static struct rtc_device	*rtcdev;
54
static DEFINE_SPINLOCK(rtcdev_lock);
55

56 57 58 59 60 61 62
/**
 * alarmtimer_get_rtcdev - Return selected rtcdevice
 *
 * This function returns the rtc device to use for wakealarms.
 * If one has not already been chosen, it checks to see if a
 * functional rtc device is available.
 */
63
struct rtc_device *alarmtimer_get_rtcdev(void)
64 65 66 67 68 69 70 71 72 73
{
	unsigned long flags;
	struct rtc_device *ret;

	spin_lock_irqsave(&rtcdev_lock, flags);
	ret = rtcdev;
	spin_unlock_irqrestore(&rtcdev_lock, flags);

	return ret;
}
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


static int alarmtimer_rtc_add_device(struct device *dev,
				struct class_interface *class_intf)
{
	unsigned long flags;
	struct rtc_device *rtc = to_rtc_device(dev);

	if (rtcdev)
		return -EBUSY;

	if (!rtc->ops->set_alarm)
		return -1;
	if (!device_may_wakeup(rtc->dev.parent))
		return -1;

	spin_lock_irqsave(&rtcdev_lock, flags);
	if (!rtcdev) {
		rtcdev = rtc;
		/* hold a reference so it doesn't go away */
		get_device(dev);
	}
	spin_unlock_irqrestore(&rtcdev_lock, flags);
	return 0;
}

100 101 102 103 104
static inline void alarmtimer_rtc_timer_init(void)
{
	rtc_timer_init(&rtctimer, NULL, NULL);
}

105 106 107 108
static struct class_interface alarmtimer_rtc_interface = {
	.add_dev = &alarmtimer_rtc_add_device,
};

109
static int alarmtimer_rtc_interface_setup(void)
110 111
{
	alarmtimer_rtc_interface.class = rtc_class;
112 113 114 115 116
	return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
	class_interface_unregister(&alarmtimer_rtc_interface);
117
}
118
#else
119
struct rtc_device *alarmtimer_get_rtcdev(void)
120 121 122 123 124 125
{
	return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
126
static inline void alarmtimer_rtc_timer_init(void) { }
127
#endif
128

129
/**
130 131 132 133
 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 * @base: pointer to the base where the timer is being run
 * @alarm: pointer to alarm being enqueued.
 *
134
 * Adds alarm to a alarm_base timerqueue
135 136 137 138 139
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
140 141 142
	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
		timerqueue_del(&base->timerqueue, &alarm->node);

143
	timerqueue_add(&base->timerqueue, &alarm->node);
144
	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 146
}

147
/**
148
 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 150 151
 * @base: pointer to the base where the timer is running
 * @alarm: pointer to alarm being removed
 *
152
 * Removes alarm to a alarm_base timerqueue
153 154 155
 *
 * Must hold base->lock when calling.
 */
156
static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157
{
158 159 160
	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
		return;

161
	timerqueue_del(&base->timerqueue, &alarm->node);
162
	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 164
}

165

166
/**
167 168
 * alarmtimer_fired - Handles alarm hrtimer being fired.
 * @timer: pointer to hrtimer being run
169
 *
170 171 172 173
 * When a alarm timer fires, this runs through the timerqueue to
 * see which alarms expired, and runs those. If there are more alarm
 * timers queued for the future, we set the hrtimer to fire when
 * when the next future alarm timer expires.
174
 */
175
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176
{
177 178
	struct alarm *alarm = container_of(timer, struct alarm, timer);
	struct alarm_base *base = &alarm_bases[alarm->type];
179
	unsigned long flags;
180
	int ret = HRTIMER_NORESTART;
181
	int restart = ALARMTIMER_NORESTART;
182 183

	spin_lock_irqsave(&base->lock, flags);
184
	alarmtimer_dequeue(base, alarm);
185
	spin_unlock_irqrestore(&base->lock, flags);
186

187 188
	if (alarm->function)
		restart = alarm->function(alarm, base->gettime());
189

190 191 192 193
	spin_lock_irqsave(&base->lock, flags);
	if (restart != ALARMTIMER_NORESTART) {
		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
		alarmtimer_enqueue(base, alarm);
194
		ret = HRTIMER_RESTART;
195 196 197
	}
	spin_unlock_irqrestore(&base->lock, flags);

198
	return ret;
199 200 201

}

202 203 204 205 206
ktime_t alarm_expires_remaining(const struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	return ktime_sub(alarm->node.expires, base->gettime());
}
207
EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208

209
#ifdef CONFIG_RTC_CLASS
210
/**
211 212 213 214 215 216 217 218 219 220 221 222 223 224
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
	struct rtc_time tm;
	ktime_t min, now;
	unsigned long flags;
225
	struct rtc_device *rtc;
226
	int i;
227
	int ret;
228 229 230 231 232 233

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
	freezer_delta = ktime_set(0, 0);
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

234
	rtc = alarmtimer_get_rtcdev();
235
	/* If we have no rtcdev, just return */
236
	if (!rtc)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
		if (!min.tv64 || (delta.tv64 < min.tv64))
			min = delta;
	}
	if (min.tv64 == 0)
		return 0;

257 258 259 260
	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
		return -EBUSY;
	}
261 262

	/* Setup an rtc timer to fire that far in the future */
263 264
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
265 266 267
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

268 269 270 271 272
	/* Set alarm, if in the past reject suspend briefly to handle */
	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
	if (ret < 0)
		__pm_wakeup_event(ws, MSEC_PER_SEC);
	return ret;
273
}
274 275 276 277 278 279
#else
static int alarmtimer_suspend(struct device *dev)
{
	return 0;
}
#endif
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
	ktime_t delta;
	unsigned long flags;
	struct alarm_base *base = &alarm_bases[type];

	delta = ktime_sub(absexp, base->gettime());

	spin_lock_irqsave(&freezer_delta_lock, flags);
	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
		freezer_delta = delta;
	spin_unlock_irqrestore(&freezer_delta_lock, flags);
}


296
/**
297 298 299 300 301 302
 * alarm_init - Initialize an alarm structure
 * @alarm: ptr to alarm to be initialized
 * @type: the type of the alarm
 * @function: callback that is run when the alarm fires
 */
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303
		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304 305
{
	timerqueue_init(&alarm->node);
306 307 308
	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
			HRTIMER_MODE_ABS);
	alarm->timer.function = alarmtimer_fired;
309 310
	alarm->function = function;
	alarm->type = type;
311
	alarm->state = ALARMTIMER_STATE_INACTIVE;
312
}
313
EXPORT_SYMBOL_GPL(alarm_init);
314

315
/**
316
 * alarm_start - Sets an absolute alarm to fire
317 318 319
 * @alarm: ptr to alarm to set
 * @start: time to run the alarm
 */
320
int alarm_start(struct alarm *alarm, ktime_t start)
321 322 323
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
324
	int ret;
325 326 327 328

	spin_lock_irqsave(&base->lock, flags);
	alarm->node.expires = start;
	alarmtimer_enqueue(base, alarm);
329 330
	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
				HRTIMER_MODE_ABS);
331
	spin_unlock_irqrestore(&base->lock, flags);
332
	return ret;
333
}
334
EXPORT_SYMBOL_GPL(alarm_start);
335

336 337 338 339 340 341 342 343 344 345 346 347
/**
 * alarm_start_relative - Sets a relative alarm to fire
 * @alarm: ptr to alarm to set
 * @start: time relative to now to run the alarm
 */
int alarm_start_relative(struct alarm *alarm, ktime_t start)
{
	struct alarm_base *base = &alarm_bases[alarm->type];

	start = ktime_add(start, base->gettime());
	return alarm_start(alarm, start);
}
348
EXPORT_SYMBOL_GPL(alarm_start_relative);
349 350 351 352 353 354 355 356 357 358 359 360

void alarm_restart(struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;

	spin_lock_irqsave(&base->lock, flags);
	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
	hrtimer_restart(&alarm->timer);
	alarmtimer_enqueue(base, alarm);
	spin_unlock_irqrestore(&base->lock, flags);
}
361
EXPORT_SYMBOL_GPL(alarm_restart);
362

363
/**
364
 * alarm_try_to_cancel - Tries to cancel an alarm timer
365
 * @alarm: ptr to alarm to be canceled
366 367 368
 *
 * Returns 1 if the timer was canceled, 0 if it was not running,
 * and -1 if the callback was running
369
 */
370
int alarm_try_to_cancel(struct alarm *alarm)
371 372 373
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
374
	int ret;
375

376 377 378
	spin_lock_irqsave(&base->lock, flags);
	ret = hrtimer_try_to_cancel(&alarm->timer);
	if (ret >= 0)
379
		alarmtimer_dequeue(base, alarm);
380
	spin_unlock_irqrestore(&base->lock, flags);
381
	return ret;
382
}
383
EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
384 385


386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/**
 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 * @alarm: ptr to alarm to be canceled
 *
 * Returns 1 if the timer was canceled, 0 if it was not active.
 */
int alarm_cancel(struct alarm *alarm)
{
	for (;;) {
		int ret = alarm_try_to_cancel(alarm);
		if (ret >= 0)
			return ret;
		cpu_relax();
	}
}
401
EXPORT_SYMBOL_GPL(alarm_cancel);
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
	u64 overrun = 1;
	ktime_t delta;

	delta = ktime_sub(now, alarm->node.expires);

	if (delta.tv64 < 0)
		return 0;

	if (unlikely(delta.tv64 >= interval.tv64)) {
		s64 incr = ktime_to_ns(interval);

		overrun = ktime_divns(delta, incr);

		alarm->node.expires = ktime_add_ns(alarm->node.expires,
							incr*overrun);

		if (alarm->node.expires.tv64 > now.tv64)
			return overrun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		overrun++;
	}

	alarm->node.expires = ktime_add(alarm->node.expires, interval);
	return overrun;
}
434
EXPORT_SYMBOL_GPL(alarm_forward);
435

436 437 438 439 440 441
u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
	struct alarm_base *base = &alarm_bases[alarm->type];

	return alarm_forward(alarm, base->gettime(), interval);
}
442
EXPORT_SYMBOL_GPL(alarm_forward_now);
443 444


445
/**
446 447 448 449 450 451 452 453 454 455 456 457
 * clock2alarm - helper that converts from clockid to alarmtypes
 * @clockid: clockid.
 */
static enum alarmtimer_type clock2alarm(clockid_t clockid)
{
	if (clockid == CLOCK_REALTIME_ALARM)
		return ALARM_REALTIME;
	if (clockid == CLOCK_BOOTTIME_ALARM)
		return ALARM_BOOTTIME;
	return -1;
}

458
/**
459 460 461 462 463
 * alarm_handle_timer - Callback for posix timers
 * @alarm: alarm that fired
 *
 * Posix timer callback for expired alarm timers.
 */
464 465
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
							ktime_t now)
466 467
{
	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468
						it.alarm.alarmtimer);
469 470
	if (posix_timer_event(ptr, 0) != 0)
		ptr->it_overrun++;
471

472
	/* Re-add periodic timers */
473 474 475
	if (ptr->it.alarm.interval.tv64) {
		ptr->it_overrun += alarm_forward(alarm, now,
						ptr->it.alarm.interval);
476 477
		return ALARMTIMER_RESTART;
	}
478
	return ALARMTIMER_NORESTART;
479 480
}

481
/**
482 483 484 485 486 487 488 489 490 491
 * alarm_clock_getres - posix getres interface
 * @which_clock: clockid
 * @tp: timespec to fill
 *
 * Returns the granularity of underlying alarm base clock
 */
static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;

492
	if (!alarmtimer_get_rtcdev())
493
		return -EINVAL;
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508
	return hrtimer_get_res(baseid, tp);
}

/**
 * alarm_clock_get - posix clock_get interface
 * @which_clock: clockid
 * @tp: timespec to fill.
 *
 * Provides the underlying alarm base time.
 */
static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
{
	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];

509
	if (!alarmtimer_get_rtcdev())
510
		return -EINVAL;
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	*tp = ktime_to_timespec(base->gettime());
	return 0;
}

/**
 * alarm_timer_create - posix timer_create interface
 * @new_timer: k_itimer pointer to manage
 *
 * Initializes the k_itimer structure.
 */
static int alarm_timer_create(struct k_itimer *new_timer)
{
	enum  alarmtimer_type type;
	struct alarm_base *base;

527 528 529
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

530 531 532 533 534
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	type = clock2alarm(new_timer->it_clock);
	base = &alarm_bases[type];
535
	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536 537 538 539 540 541 542 543 544 545 546 547 548
	return 0;
}

/**
 * alarm_timer_get - posix timer_get interface
 * @new_timer: k_itimer pointer
 * @cur_setting: itimerspec data to fill
 *
 * Copies the itimerspec data out from the k_itimer
 */
static void alarm_timer_get(struct k_itimer *timr,
				struct itimerspec *cur_setting)
{
549 550
	memset(cur_setting, 0, sizeof(struct itimerspec));

551
	cur_setting->it_interval =
552
			ktime_to_timespec(timr->it.alarm.interval);
553
	cur_setting->it_value =
554
		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555 556 557 558 559 560 561 562 563 564 565
	return;
}

/**
 * alarm_timer_del - posix timer_del interface
 * @timr: k_itimer pointer to be deleted
 *
 * Cancels any programmed alarms for the given timer.
 */
static int alarm_timer_del(struct k_itimer *timr)
{
566 567 568
	if (!rtcdev)
		return -ENOTSUPP;

569 570 571
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	return 0;
}

/**
 * alarm_timer_set - posix timer_set interface
 * @timr: k_itimer pointer to be deleted
 * @flags: timer flags
 * @new_setting: itimerspec to be used
 * @old_setting: itimerspec being replaced
 *
 * Sets the timer to new_setting, and starts the timer.
 */
static int alarm_timer_set(struct k_itimer *timr, int flags,
				struct itimerspec *new_setting,
				struct itimerspec *old_setting)
{
588 589 590
	if (!rtcdev)
		return -ENOTSUPP;

591 592
	if (old_setting)
		alarm_timer_get(timr, old_setting);
593 594

	/* If the timer was already set, cancel it */
595 596
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;
597 598

	/* start the timer */
599 600 601
	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
	alarm_start(&timr->it.alarm.alarmtimer,
			timespec_to_ktime(new_setting->it_value));
602 603 604 605 606 607 608 609 610
	return 0;
}

/**
 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 * @alarm: ptr to alarm that fired
 *
 * Wakes up the task that set the alarmtimer
 */
611 612
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
								ktime_t now)
613 614 615 616 617 618
{
	struct task_struct *task = (struct task_struct *)alarm->data;

	alarm->data = NULL;
	if (task)
		wake_up_process(task);
619
	return ALARMTIMER_NORESTART;
620 621 622 623 624 625 626 627 628 629 630 631 632 633
}

/**
 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 * @alarm: ptr to alarmtimer
 * @absexp: absolute expiration time
 *
 * Sets the alarm timer and sleeps until it is fired or interrupted.
 */
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
{
	alarm->data = (void *)current;
	do {
		set_current_state(TASK_INTERRUPTIBLE);
634
		alarm_start(alarm, absexp);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		if (likely(alarm->data))
			schedule();

		alarm_cancel(alarm);
	} while (alarm->data && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	return (alarm->data == NULL);
}


/**
 * update_rmtp - Update remaining timespec value
 * @exp: expiration time
 * @type: timer type
 * @rmtp: user pointer to remaining timepsec value
 *
 * Helper function that fills in rmtp value with time between
 * now and the exp value
 */
static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
			struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(exp, alarm_bases[type].gettime());

	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;

}

/**
 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 * @restart: ptr to restart block
 *
 * Handles restarted clock_nanosleep calls
 */
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
683
	enum  alarmtimer_type type = restart->nanosleep.clockid;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	ktime_t exp;
	struct timespec __user  *rmtp;
	struct alarm alarm;
	int ret = 0;

	exp.tv64 = restart->nanosleep.expires;
	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	rmtp = restart->nanosleep.rmtp;
	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}


	/* The other values in restart are already filled in */
	ret = -ERESTART_RESTARTBLOCK;
out:
	return ret;
}

/**
 * alarm_timer_nsleep - alarmtimer nanosleep
 * @which_clock: clockid
 * @flags: determins abstime or relative
 * @tsreq: requested sleep time (abs or rel)
 * @rmtp: remaining sleep time saved
 *
 * Handles clock_nanosleep calls against _ALARM clockids
 */
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
		     struct timespec *tsreq, struct timespec __user *rmtp)
{
	enum  alarmtimer_type type = clock2alarm(which_clock);
	struct alarm alarm;
	ktime_t exp;
	int ret = 0;
	struct restart_block *restart;

730 731 732
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	exp = timespec_to_ktime(*tsreq);
	/* Convert (if necessary) to absolute time */
	if (flags != TIMER_ABSTIME) {
		ktime_t now = alarm_bases[type].gettime();
		exp = ktime_add(now, exp);
	}

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	/* abs timers don't set remaining time or restart */
	if (flags == TIMER_ABSTIME) {
		ret = -ERESTARTNOHAND;
		goto out;
	}

	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}

	restart = &current_thread_info()->restart_block;
	restart->fn = alarm_timer_nsleep_restart;
765
	restart->nanosleep.clockid = type;
766 767 768 769 770 771 772
	restart->nanosleep.expires = exp.tv64;
	restart->nanosleep.rmtp = rmtp;
	ret = -ERESTART_RESTARTBLOCK;

out:
	return ret;
}
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794


/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
	.suspend = alarmtimer_suspend,
};

static struct platform_driver alarmtimer_driver = {
	.driver = {
		.name = "alarmtimer",
		.pm = &alarmtimer_pm_ops,
	}
};

/**
 * alarmtimer_init - Initialize alarm timer code
 *
 * This function initializes the alarm bases and registers
 * the posix clock ids.
 */
static int __init alarmtimer_init(void)
{
795
	struct platform_device *pdev;
796 797
	int error = 0;
	int i;
798 799 800 801 802 803 804 805 806 807
	struct k_clock alarm_clock = {
		.clock_getres	= alarm_clock_getres,
		.clock_get	= alarm_clock_get,
		.timer_create	= alarm_timer_create,
		.timer_set	= alarm_timer_set,
		.timer_del	= alarm_timer_del,
		.timer_get	= alarm_timer_get,
		.nsleep		= alarm_timer_nsleep,
	};

808
	alarmtimer_rtc_timer_init();
809

810 811
	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
812 813 814 815 816 817 818 819 820 821

	/* Initialize alarm bases */
	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		timerqueue_init_head(&alarm_bases[i].timerqueue);
		spin_lock_init(&alarm_bases[i].lock);
	}
822

823 824 825 826
	error = alarmtimer_rtc_interface_setup();
	if (error)
		return error;

827
	error = platform_driver_register(&alarmtimer_driver);
828 829
	if (error)
		goto out_if;
830

831 832 833 834 835
	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
	if (IS_ERR(pdev)) {
		error = PTR_ERR(pdev);
		goto out_drv;
	}
836
	ws = wakeup_source_register("alarmtimer");
837 838 839 840 841 842
	return 0;

out_drv:
	platform_driver_unregister(&alarmtimer_driver);
out_if:
	alarmtimer_rtc_interface_remove();
843 844 845
	return error;
}
device_initcall(alarmtimer_init);