alarmtimer.c 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Alarmtimer interface
 *
 * This interface provides a timer which is similarto hrtimers,
 * but triggers a RTC alarm if the box is suspend.
 *
 * This interface is influenced by the Android RTC Alarm timer
 * interface.
 *
 * Copyright (C) 2010 IBM Corperation
 *
 * Author: John Stultz <john.stultz@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>

29 30 31 32 33 34 35 36
/**
 * struct alarm_base - Alarm timer bases
 * @lock:		Lock for syncrhonized access to the base
 * @timerqueue:		Timerqueue head managing the list of events
 * @timer: 		hrtimer used to schedule events while running
 * @gettime:		Function to read the time correlating to the base
 * @base_clockid:	clockid for the base
 */
37 38 39 40 41 42 43
static struct alarm_base {
	spinlock_t		lock;
	struct timerqueue_head	timerqueue;
	ktime_t			(*gettime)(void);
	clockid_t		base_clockid;
} alarm_bases[ALARM_NUMTYPE];

44 45 46 47
/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);

48 49
static struct wakeup_source *ws;

50
#ifdef CONFIG_RTC_CLASS
51
/* rtc timer and device for setting alarm wakeups at suspend */
52
static struct rtc_timer		rtctimer;
53
static struct rtc_device	*rtcdev;
54
static DEFINE_SPINLOCK(rtcdev_lock);
55

56 57 58 59 60 61 62
/**
 * alarmtimer_get_rtcdev - Return selected rtcdevice
 *
 * This function returns the rtc device to use for wakealarms.
 * If one has not already been chosen, it checks to see if a
 * functional rtc device is available.
 */
63
struct rtc_device *alarmtimer_get_rtcdev(void)
64 65 66 67 68 69 70 71 72 73
{
	unsigned long flags;
	struct rtc_device *ret;

	spin_lock_irqsave(&rtcdev_lock, flags);
	ret = rtcdev;
	spin_unlock_irqrestore(&rtcdev_lock, flags);

	return ret;
}
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


static int alarmtimer_rtc_add_device(struct device *dev,
				struct class_interface *class_intf)
{
	unsigned long flags;
	struct rtc_device *rtc = to_rtc_device(dev);

	if (rtcdev)
		return -EBUSY;

	if (!rtc->ops->set_alarm)
		return -1;
	if (!device_may_wakeup(rtc->dev.parent))
		return -1;

	spin_lock_irqsave(&rtcdev_lock, flags);
	if (!rtcdev) {
		rtcdev = rtc;
		/* hold a reference so it doesn't go away */
		get_device(dev);
	}
	spin_unlock_irqrestore(&rtcdev_lock, flags);
	return 0;
}

100 101 102 103 104
static inline void alarmtimer_rtc_timer_init(void)
{
	rtc_timer_init(&rtctimer, NULL, NULL);
}

105 106 107 108
static struct class_interface alarmtimer_rtc_interface = {
	.add_dev = &alarmtimer_rtc_add_device,
};

109
static int alarmtimer_rtc_interface_setup(void)
110 111
{
	alarmtimer_rtc_interface.class = rtc_class;
112 113 114 115 116
	return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
	class_interface_unregister(&alarmtimer_rtc_interface);
117
}
118
#else
119
struct rtc_device *alarmtimer_get_rtcdev(void)
120 121 122 123 124 125
{
	return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
126
static inline void alarmtimer_rtc_timer_init(void) { }
127
#endif
128

129
/**
130 131 132 133
 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 * @base: pointer to the base where the timer is being run
 * @alarm: pointer to alarm being enqueued.
 *
134
 * Adds alarm to a alarm_base timerqueue
135 136 137 138 139
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
140 141 142
	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
		timerqueue_del(&base->timerqueue, &alarm->node);

143
	timerqueue_add(&base->timerqueue, &alarm->node);
144
	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 146
}

147
/**
148
 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 150 151
 * @base: pointer to the base where the timer is running
 * @alarm: pointer to alarm being removed
 *
152
 * Removes alarm to a alarm_base timerqueue
153 154 155
 *
 * Must hold base->lock when calling.
 */
156
static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157
{
158 159 160
	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
		return;

161
	timerqueue_del(&base->timerqueue, &alarm->node);
162
	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 164
}

165

166
/**
167 168
 * alarmtimer_fired - Handles alarm hrtimer being fired.
 * @timer: pointer to hrtimer being run
169
 *
170 171 172 173
 * When a alarm timer fires, this runs through the timerqueue to
 * see which alarms expired, and runs those. If there are more alarm
 * timers queued for the future, we set the hrtimer to fire when
 * when the next future alarm timer expires.
174
 */
175
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176
{
177 178
	struct alarm *alarm = container_of(timer, struct alarm, timer);
	struct alarm_base *base = &alarm_bases[alarm->type];
179
	unsigned long flags;
180
	int ret = HRTIMER_NORESTART;
181
	int restart = ALARMTIMER_NORESTART;
182 183

	spin_lock_irqsave(&base->lock, flags);
184
	alarmtimer_dequeue(base, alarm);
185
	spin_unlock_irqrestore(&base->lock, flags);
186

187 188
	if (alarm->function)
		restart = alarm->function(alarm, base->gettime());
189

190 191 192 193
	spin_lock_irqsave(&base->lock, flags);
	if (restart != ALARMTIMER_NORESTART) {
		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
		alarmtimer_enqueue(base, alarm);
194
		ret = HRTIMER_RESTART;
195 196 197
	}
	spin_unlock_irqrestore(&base->lock, flags);

198
	return ret;
199 200 201

}

202 203 204 205 206 207
ktime_t alarm_expires_remaining(const struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	return ktime_sub(alarm->node.expires, base->gettime());
}

208
#ifdef CONFIG_RTC_CLASS
209
/**
210 211 212 213 214 215 216 217 218 219 220 221 222 223
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
	struct rtc_time tm;
	ktime_t min, now;
	unsigned long flags;
224
	struct rtc_device *rtc;
225
	int i;
226
	int ret;
227 228 229 230 231 232

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
	freezer_delta = ktime_set(0, 0);
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

233
	rtc = alarmtimer_get_rtcdev();
234
	/* If we have no rtcdev, just return */
235
	if (!rtc)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
		if (!min.tv64 || (delta.tv64 < min.tv64))
			min = delta;
	}
	if (min.tv64 == 0)
		return 0;

256 257 258 259
	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
		return -EBUSY;
	}
260 261

	/* Setup an rtc timer to fire that far in the future */
262 263
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
264 265 266
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

267 268 269 270 271
	/* Set alarm, if in the past reject suspend briefly to handle */
	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
	if (ret < 0)
		__pm_wakeup_event(ws, MSEC_PER_SEC);
	return ret;
272
}
273 274 275 276 277 278
#else
static int alarmtimer_suspend(struct device *dev)
{
	return 0;
}
#endif
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
	ktime_t delta;
	unsigned long flags;
	struct alarm_base *base = &alarm_bases[type];

	delta = ktime_sub(absexp, base->gettime());

	spin_lock_irqsave(&freezer_delta_lock, flags);
	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
		freezer_delta = delta;
	spin_unlock_irqrestore(&freezer_delta_lock, flags);
}


295
/**
296 297 298 299 300 301
 * alarm_init - Initialize an alarm structure
 * @alarm: ptr to alarm to be initialized
 * @type: the type of the alarm
 * @function: callback that is run when the alarm fires
 */
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
302
		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
303 304
{
	timerqueue_init(&alarm->node);
305 306 307
	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
			HRTIMER_MODE_ABS);
	alarm->timer.function = alarmtimer_fired;
308 309
	alarm->function = function;
	alarm->type = type;
310
	alarm->state = ALARMTIMER_STATE_INACTIVE;
311 312
}

313
/**
314
 * alarm_start - Sets an absolute alarm to fire
315 316 317
 * @alarm: ptr to alarm to set
 * @start: time to run the alarm
 */
318
int alarm_start(struct alarm *alarm, ktime_t start)
319 320 321
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
322
	int ret;
323 324 325 326

	spin_lock_irqsave(&base->lock, flags);
	alarm->node.expires = start;
	alarmtimer_enqueue(base, alarm);
327 328
	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
				HRTIMER_MODE_ABS);
329
	spin_unlock_irqrestore(&base->lock, flags);
330
	return ret;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * alarm_start_relative - Sets a relative alarm to fire
 * @alarm: ptr to alarm to set
 * @start: time relative to now to run the alarm
 */
int alarm_start_relative(struct alarm *alarm, ktime_t start)
{
	struct alarm_base *base = &alarm_bases[alarm->type];

	start = ktime_add(start, base->gettime());
	return alarm_start(alarm, start);
}

void alarm_restart(struct alarm *alarm)
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;

	spin_lock_irqsave(&base->lock, flags);
	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
	hrtimer_restart(&alarm->timer);
	alarmtimer_enqueue(base, alarm);
	spin_unlock_irqrestore(&base->lock, flags);
}

358
/**
359
 * alarm_try_to_cancel - Tries to cancel an alarm timer
360
 * @alarm: ptr to alarm to be canceled
361 362 363
 *
 * Returns 1 if the timer was canceled, 0 if it was not running,
 * and -1 if the callback was running
364
 */
365
int alarm_try_to_cancel(struct alarm *alarm)
366 367 368
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
369
	int ret;
370

371 372 373
	spin_lock_irqsave(&base->lock, flags);
	ret = hrtimer_try_to_cancel(&alarm->timer);
	if (ret >= 0)
374
		alarmtimer_dequeue(base, alarm);
375
	spin_unlock_irqrestore(&base->lock, flags);
376
	return ret;
377 378 379
}


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/**
 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 * @alarm: ptr to alarm to be canceled
 *
 * Returns 1 if the timer was canceled, 0 if it was not active.
 */
int alarm_cancel(struct alarm *alarm)
{
	for (;;) {
		int ret = alarm_try_to_cancel(alarm);
		if (ret >= 0)
			return ret;
		cpu_relax();
	}
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
	u64 overrun = 1;
	ktime_t delta;

	delta = ktime_sub(now, alarm->node.expires);

	if (delta.tv64 < 0)
		return 0;

	if (unlikely(delta.tv64 >= interval.tv64)) {
		s64 incr = ktime_to_ns(interval);

		overrun = ktime_divns(delta, incr);

		alarm->node.expires = ktime_add_ns(alarm->node.expires,
							incr*overrun);

		if (alarm->node.expires.tv64 > now.tv64)
			return overrun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		overrun++;
	}

	alarm->node.expires = ktime_add(alarm->node.expires, interval);
	return overrun;
}

428 429 430 431 432 433
u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
	struct alarm_base *base = &alarm_bases[alarm->type];

	return alarm_forward(alarm, base->gettime(), interval);
}
434 435 436



437
/**
438 439 440 441 442 443 444 445 446 447 448 449
 * clock2alarm - helper that converts from clockid to alarmtypes
 * @clockid: clockid.
 */
static enum alarmtimer_type clock2alarm(clockid_t clockid)
{
	if (clockid == CLOCK_REALTIME_ALARM)
		return ALARM_REALTIME;
	if (clockid == CLOCK_BOOTTIME_ALARM)
		return ALARM_BOOTTIME;
	return -1;
}

450
/**
451 452 453 454 455
 * alarm_handle_timer - Callback for posix timers
 * @alarm: alarm that fired
 *
 * Posix timer callback for expired alarm timers.
 */
456 457
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
							ktime_t now)
458 459
{
	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
460
						it.alarm.alarmtimer);
461 462
	if (posix_timer_event(ptr, 0) != 0)
		ptr->it_overrun++;
463

464
	/* Re-add periodic timers */
465 466 467
	if (ptr->it.alarm.interval.tv64) {
		ptr->it_overrun += alarm_forward(alarm, now,
						ptr->it.alarm.interval);
468 469
		return ALARMTIMER_RESTART;
	}
470
	return ALARMTIMER_NORESTART;
471 472
}

473
/**
474 475 476 477 478 479 480 481 482 483
 * alarm_clock_getres - posix getres interface
 * @which_clock: clockid
 * @tp: timespec to fill
 *
 * Returns the granularity of underlying alarm base clock
 */
static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;

484 485 486
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

487 488 489 490 491 492 493 494 495 496 497 498 499 500
	return hrtimer_get_res(baseid, tp);
}

/**
 * alarm_clock_get - posix clock_get interface
 * @which_clock: clockid
 * @tp: timespec to fill.
 *
 * Provides the underlying alarm base time.
 */
static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
{
	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];

501 502 503
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	*tp = ktime_to_timespec(base->gettime());
	return 0;
}

/**
 * alarm_timer_create - posix timer_create interface
 * @new_timer: k_itimer pointer to manage
 *
 * Initializes the k_itimer structure.
 */
static int alarm_timer_create(struct k_itimer *new_timer)
{
	enum  alarmtimer_type type;
	struct alarm_base *base;

519 520 521
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

522 523 524 525 526
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	type = clock2alarm(new_timer->it_clock);
	base = &alarm_bases[type];
527
	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
528 529 530 531 532 533 534 535 536 537 538 539 540
	return 0;
}

/**
 * alarm_timer_get - posix timer_get interface
 * @new_timer: k_itimer pointer
 * @cur_setting: itimerspec data to fill
 *
 * Copies the itimerspec data out from the k_itimer
 */
static void alarm_timer_get(struct k_itimer *timr,
				struct itimerspec *cur_setting)
{
541 542
	memset(cur_setting, 0, sizeof(struct itimerspec));

543
	cur_setting->it_interval =
544
			ktime_to_timespec(timr->it.alarm.interval);
545
	cur_setting->it_value =
546
		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
547 548 549 550 551 552 553 554 555 556 557
	return;
}

/**
 * alarm_timer_del - posix timer_del interface
 * @timr: k_itimer pointer to be deleted
 *
 * Cancels any programmed alarms for the given timer.
 */
static int alarm_timer_del(struct k_itimer *timr)
{
558 559 560
	if (!rtcdev)
		return -ENOTSUPP;

561 562 563
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return 0;
}

/**
 * alarm_timer_set - posix timer_set interface
 * @timr: k_itimer pointer to be deleted
 * @flags: timer flags
 * @new_setting: itimerspec to be used
 * @old_setting: itimerspec being replaced
 *
 * Sets the timer to new_setting, and starts the timer.
 */
static int alarm_timer_set(struct k_itimer *timr, int flags,
				struct itimerspec *new_setting,
				struct itimerspec *old_setting)
{
580 581 582
	if (!rtcdev)
		return -ENOTSUPP;

583 584
	if (old_setting)
		alarm_timer_get(timr, old_setting);
585 586

	/* If the timer was already set, cancel it */
587 588
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;
589 590

	/* start the timer */
591 592 593
	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
	alarm_start(&timr->it.alarm.alarmtimer,
			timespec_to_ktime(new_setting->it_value));
594 595 596 597 598 599 600 601 602
	return 0;
}

/**
 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 * @alarm: ptr to alarm that fired
 *
 * Wakes up the task that set the alarmtimer
 */
603 604
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
								ktime_t now)
605 606 607 608 609 610
{
	struct task_struct *task = (struct task_struct *)alarm->data;

	alarm->data = NULL;
	if (task)
		wake_up_process(task);
611
	return ALARMTIMER_NORESTART;
612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

/**
 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 * @alarm: ptr to alarmtimer
 * @absexp: absolute expiration time
 *
 * Sets the alarm timer and sleeps until it is fired or interrupted.
 */
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
{
	alarm->data = (void *)current;
	do {
		set_current_state(TASK_INTERRUPTIBLE);
626
		alarm_start(alarm, absexp);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		if (likely(alarm->data))
			schedule();

		alarm_cancel(alarm);
	} while (alarm->data && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	return (alarm->data == NULL);
}


/**
 * update_rmtp - Update remaining timespec value
 * @exp: expiration time
 * @type: timer type
 * @rmtp: user pointer to remaining timepsec value
 *
 * Helper function that fills in rmtp value with time between
 * now and the exp value
 */
static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
			struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(exp, alarm_bases[type].gettime());

	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;

}

/**
 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 * @restart: ptr to restart block
 *
 * Handles restarted clock_nanosleep calls
 */
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
675
	enum  alarmtimer_type type = restart->nanosleep.clockid;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	ktime_t exp;
	struct timespec __user  *rmtp;
	struct alarm alarm;
	int ret = 0;

	exp.tv64 = restart->nanosleep.expires;
	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	rmtp = restart->nanosleep.rmtp;
	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}


	/* The other values in restart are already filled in */
	ret = -ERESTART_RESTARTBLOCK;
out:
	return ret;
}

/**
 * alarm_timer_nsleep - alarmtimer nanosleep
 * @which_clock: clockid
 * @flags: determins abstime or relative
 * @tsreq: requested sleep time (abs or rel)
 * @rmtp: remaining sleep time saved
 *
 * Handles clock_nanosleep calls against _ALARM clockids
 */
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
		     struct timespec *tsreq, struct timespec __user *rmtp)
{
	enum  alarmtimer_type type = clock2alarm(which_clock);
	struct alarm alarm;
	ktime_t exp;
	int ret = 0;
	struct restart_block *restart;

722 723 724
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	exp = timespec_to_ktime(*tsreq);
	/* Convert (if necessary) to absolute time */
	if (flags != TIMER_ABSTIME) {
		ktime_t now = alarm_bases[type].gettime();
		exp = ktime_add(now, exp);
	}

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	/* abs timers don't set remaining time or restart */
	if (flags == TIMER_ABSTIME) {
		ret = -ERESTARTNOHAND;
		goto out;
	}

	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}

	restart = &current_thread_info()->restart_block;
	restart->fn = alarm_timer_nsleep_restart;
757
	restart->nanosleep.clockid = type;
758 759 760 761 762 763 764
	restart->nanosleep.expires = exp.tv64;
	restart->nanosleep.rmtp = rmtp;
	ret = -ERESTART_RESTARTBLOCK;

out:
	return ret;
}
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786


/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
	.suspend = alarmtimer_suspend,
};

static struct platform_driver alarmtimer_driver = {
	.driver = {
		.name = "alarmtimer",
		.pm = &alarmtimer_pm_ops,
	}
};

/**
 * alarmtimer_init - Initialize alarm timer code
 *
 * This function initializes the alarm bases and registers
 * the posix clock ids.
 */
static int __init alarmtimer_init(void)
{
787
	struct platform_device *pdev;
788 789
	int error = 0;
	int i;
790 791 792 793 794 795 796 797 798 799
	struct k_clock alarm_clock = {
		.clock_getres	= alarm_clock_getres,
		.clock_get	= alarm_clock_get,
		.timer_create	= alarm_timer_create,
		.timer_set	= alarm_timer_set,
		.timer_del	= alarm_timer_del,
		.timer_get	= alarm_timer_get,
		.nsleep		= alarm_timer_nsleep,
	};

800
	alarmtimer_rtc_timer_init();
801

802 803
	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
804 805 806 807 808 809 810 811 812 813

	/* Initialize alarm bases */
	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		timerqueue_init_head(&alarm_bases[i].timerqueue);
		spin_lock_init(&alarm_bases[i].lock);
	}
814

815 816 817 818
	error = alarmtimer_rtc_interface_setup();
	if (error)
		return error;

819
	error = platform_driver_register(&alarmtimer_driver);
820 821
	if (error)
		goto out_if;
822

823 824 825 826 827
	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
	if (IS_ERR(pdev)) {
		error = PTR_ERR(pdev);
		goto out_drv;
	}
828
	ws = wakeup_source_register("alarmtimer");
829 830 831 832 833 834
	return 0;

out_drv:
	platform_driver_unregister(&alarmtimer_driver);
out_if:
	alarmtimer_rtc_interface_remove();
835 836 837
	return error;
}
device_initcall(alarmtimer_init);