alarmtimer.c 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Alarmtimer interface
 *
 * This interface provides a timer which is similarto hrtimers,
 * but triggers a RTC alarm if the box is suspend.
 *
 * This interface is influenced by the Android RTC Alarm timer
 * interface.
 *
 * Copyright (C) 2010 IBM Corperation
 *
 * Author: John Stultz <john.stultz@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>

29 30 31 32 33 34 35 36
/**
 * struct alarm_base - Alarm timer bases
 * @lock:		Lock for syncrhonized access to the base
 * @timerqueue:		Timerqueue head managing the list of events
 * @timer: 		hrtimer used to schedule events while running
 * @gettime:		Function to read the time correlating to the base
 * @base_clockid:	clockid for the base
 */
37 38 39 40 41 42 43 44
static struct alarm_base {
	spinlock_t		lock;
	struct timerqueue_head	timerqueue;
	struct hrtimer		timer;
	ktime_t			(*gettime)(void);
	clockid_t		base_clockid;
} alarm_bases[ALARM_NUMTYPE];

45 46 47 48
/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);

49
#ifdef CONFIG_RTC_CLASS
50
/* rtc timer and device for setting alarm wakeups at suspend */
51
static struct rtc_timer		rtctimer;
52
static struct rtc_device	*rtcdev;
53
static DEFINE_SPINLOCK(rtcdev_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/**
 * alarmtimer_get_rtcdev - Return selected rtcdevice
 *
 * This function returns the rtc device to use for wakealarms.
 * If one has not already been chosen, it checks to see if a
 * functional rtc device is available.
 */
static struct rtc_device *alarmtimer_get_rtcdev(void)
{
	unsigned long flags;
	struct rtc_device *ret;

	spin_lock_irqsave(&rtcdev_lock, flags);
	ret = rtcdev;
	spin_unlock_irqrestore(&rtcdev_lock, flags);

	return ret;
}
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98


static int alarmtimer_rtc_add_device(struct device *dev,
				struct class_interface *class_intf)
{
	unsigned long flags;
	struct rtc_device *rtc = to_rtc_device(dev);

	if (rtcdev)
		return -EBUSY;

	if (!rtc->ops->set_alarm)
		return -1;
	if (!device_may_wakeup(rtc->dev.parent))
		return -1;

	spin_lock_irqsave(&rtcdev_lock, flags);
	if (!rtcdev) {
		rtcdev = rtc;
		/* hold a reference so it doesn't go away */
		get_device(dev);
	}
	spin_unlock_irqrestore(&rtcdev_lock, flags);
	return 0;
}

99 100 101 102 103
static inline void alarmtimer_rtc_timer_init(void)
{
	rtc_timer_init(&rtctimer, NULL, NULL);
}

104 105 106 107
static struct class_interface alarmtimer_rtc_interface = {
	.add_dev = &alarmtimer_rtc_add_device,
};

108
static int alarmtimer_rtc_interface_setup(void)
109 110
{
	alarmtimer_rtc_interface.class = rtc_class;
111 112 113 114 115
	return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
	class_interface_unregister(&alarmtimer_rtc_interface);
116
}
117
#else
118 119 120 121 122 123 124
static inline struct rtc_device *alarmtimer_get_rtcdev(void)
{
	return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
125
static inline void alarmtimer_rtc_timer_init(void) { }
126
#endif
127

128
/**
129 130 131 132 133 134 135 136 137 138 139 140
 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 * @base: pointer to the base where the timer is being run
 * @alarm: pointer to alarm being enqueued.
 *
 * Adds alarm to a alarm_base timerqueue and if necessary sets
 * an hrtimer to run.
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
	timerqueue_add(&base->timerqueue, &alarm->node);
141 142
	alarm->state |= ALARMTIMER_STATE_ENQUEUED;

143 144 145 146 147 148 149
	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
		hrtimer_try_to_cancel(&base->timer);
		hrtimer_start(&base->timer, alarm->node.expires,
				HRTIMER_MODE_ABS);
	}
}

150
/**
151 152 153 154 155 156 157 158 159 160 161 162 163
 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
 * @base: pointer to the base where the timer is running
 * @alarm: pointer to alarm being removed
 *
 * Removes alarm to a alarm_base timerqueue and if necessary sets
 * a new timer to run.
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
{
	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);

164 165 166
	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
		return;

167
	timerqueue_del(&base->timerqueue, &alarm->node);
168 169
	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;

170 171 172 173 174 175 176 177 178
	if (next == &alarm->node) {
		hrtimer_try_to_cancel(&base->timer);
		next = timerqueue_getnext(&base->timerqueue);
		if (!next)
			return;
		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
	}
}

179

180
/**
181 182
 * alarmtimer_fired - Handles alarm hrtimer being fired.
 * @timer: pointer to hrtimer being run
183
 *
184 185 186 187
 * When a alarm timer fires, this runs through the timerqueue to
 * see which alarms expired, and runs those. If there are more alarm
 * timers queued for the future, we set the hrtimer to fire when
 * when the next future alarm timer expires.
188
 */
189
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190
{
191
	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192 193 194
	struct timerqueue_node *next;
	unsigned long flags;
	ktime_t now;
195
	int ret = HRTIMER_NORESTART;
196
	int restart = ALARMTIMER_NORESTART;
197 198 199 200 201 202 203

	spin_lock_irqsave(&base->lock, flags);
	now = base->gettime();
	while ((next = timerqueue_getnext(&base->timerqueue))) {
		struct alarm *alarm;
		ktime_t expired = next->expires;

T
Thomas Gleixner 已提交
204
		if (expired.tv64 > now.tv64)
205 206 207 208 209
			break;

		alarm = container_of(next, struct alarm, node);

		timerqueue_del(&base->timerqueue, &alarm->node);
210
		alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211

212
		alarm->state |= ALARMTIMER_STATE_CALLBACK;
213 214
		spin_unlock_irqrestore(&base->lock, flags);
		if (alarm->function)
215
			restart = alarm->function(alarm, now);
216
		spin_lock_irqsave(&base->lock, flags);
217
		alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218 219 220

		if (restart != ALARMTIMER_NORESTART) {
			timerqueue_add(&base->timerqueue, &alarm->node);
221
			alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222
		}
223 224 225
	}

	if (next) {
226 227
		hrtimer_set_expires(&base->timer, next->expires);
		ret = HRTIMER_RESTART;
228 229 230
	}
	spin_unlock_irqrestore(&base->lock, flags);

231
	return ret;
232 233 234

}

235
#ifdef CONFIG_RTC_CLASS
236
/**
237 238 239 240 241 242 243 244 245 246 247 248 249 250
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
	struct rtc_time tm;
	ktime_t min, now;
	unsigned long flags;
251
	struct rtc_device *rtc;
252 253 254 255 256 257 258
	int i;

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
	freezer_delta = ktime_set(0, 0);
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

259
	rtc = alarmtimer_get_rtcdev();
260
	/* If we have no rtcdev, just return */
261
	if (!rtc)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
		if (!min.tv64 || (delta.tv64 < min.tv64))
			min = delta;
	}
	if (min.tv64 == 0)
		return 0;

	/* XXX - Should we enforce a minimum sleep time? */
	WARN_ON(min.tv64 < NSEC_PER_SEC);

	/* Setup an rtc timer to fire that far in the future */
286 287
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
288 289 290
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

291
	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
292 293 294

	return 0;
}
295 296 297 298 299 300
#else
static int alarmtimer_suspend(struct device *dev)
{
	return 0;
}
#endif
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
	ktime_t delta;
	unsigned long flags;
	struct alarm_base *base = &alarm_bases[type];

	delta = ktime_sub(absexp, base->gettime());

	spin_lock_irqsave(&freezer_delta_lock, flags);
	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
		freezer_delta = delta;
	spin_unlock_irqrestore(&freezer_delta_lock, flags);
}


317
/**
318 319 320 321 322 323
 * alarm_init - Initialize an alarm structure
 * @alarm: ptr to alarm to be initialized
 * @type: the type of the alarm
 * @function: callback that is run when the alarm fires
 */
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324
		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325 326 327 328
{
	timerqueue_init(&alarm->node);
	alarm->function = function;
	alarm->type = type;
329
	alarm->state = ALARMTIMER_STATE_INACTIVE;
330 331
}

332
/**
333 334 335 336
 * alarm_start - Sets an alarm to fire
 * @alarm: ptr to alarm to set
 * @start: time to run the alarm
 */
337
void alarm_start(struct alarm *alarm, ktime_t start)
338 339 340 341 342
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;

	spin_lock_irqsave(&base->lock, flags);
343
	if (alarmtimer_active(alarm))
344 345 346 347 348 349
		alarmtimer_remove(base, alarm);
	alarm->node.expires = start;
	alarmtimer_enqueue(base, alarm);
	spin_unlock_irqrestore(&base->lock, flags);
}

350
/**
351
 * alarm_try_to_cancel - Tries to cancel an alarm timer
352
 * @alarm: ptr to alarm to be canceled
353 354 355
 *
 * Returns 1 if the timer was canceled, 0 if it was not running,
 * and -1 if the callback was running
356
 */
357
int alarm_try_to_cancel(struct alarm *alarm)
358 359 360
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
361
	int ret = -1;
362
	spin_lock_irqsave(&base->lock, flags);
363 364 365 366 367

	if (alarmtimer_callback_running(alarm))
		goto out;

	if (alarmtimer_is_queued(alarm)) {
368
		alarmtimer_remove(base, alarm);
369 370 371 372
		ret = 1;
	} else
		ret = 0;
out:
373
	spin_unlock_irqrestore(&base->lock, flags);
374
	return ret;
375 376 377
}


378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
/**
 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 * @alarm: ptr to alarm to be canceled
 *
 * Returns 1 if the timer was canceled, 0 if it was not active.
 */
int alarm_cancel(struct alarm *alarm)
{
	for (;;) {
		int ret = alarm_try_to_cancel(alarm);
		if (ret >= 0)
			return ret;
		cpu_relax();
	}
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
	u64 overrun = 1;
	ktime_t delta;

	delta = ktime_sub(now, alarm->node.expires);

	if (delta.tv64 < 0)
		return 0;

	if (unlikely(delta.tv64 >= interval.tv64)) {
		s64 incr = ktime_to_ns(interval);

		overrun = ktime_divns(delta, incr);

		alarm->node.expires = ktime_add_ns(alarm->node.expires,
							incr*overrun);

		if (alarm->node.expires.tv64 > now.tv64)
			return overrun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		overrun++;
	}

	alarm->node.expires = ktime_add(alarm->node.expires, interval);
	return overrun;
}




429
/**
430 431 432 433 434 435 436 437 438 439 440 441
 * clock2alarm - helper that converts from clockid to alarmtypes
 * @clockid: clockid.
 */
static enum alarmtimer_type clock2alarm(clockid_t clockid)
{
	if (clockid == CLOCK_REALTIME_ALARM)
		return ALARM_REALTIME;
	if (clockid == CLOCK_BOOTTIME_ALARM)
		return ALARM_BOOTTIME;
	return -1;
}

442
/**
443 444 445 446 447
 * alarm_handle_timer - Callback for posix timers
 * @alarm: alarm that fired
 *
 * Posix timer callback for expired alarm timers.
 */
448 449
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
							ktime_t now)
450 451
{
	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452
						it.alarm.alarmtimer);
453 454
	if (posix_timer_event(ptr, 0) != 0)
		ptr->it_overrun++;
455

456
	/* Re-add periodic timers */
457 458 459
	if (ptr->it.alarm.interval.tv64) {
		ptr->it_overrun += alarm_forward(alarm, now,
						ptr->it.alarm.interval);
460 461
		return ALARMTIMER_RESTART;
	}
462
	return ALARMTIMER_NORESTART;
463 464
}

465
/**
466 467 468 469 470 471 472 473 474 475
 * alarm_clock_getres - posix getres interface
 * @which_clock: clockid
 * @tp: timespec to fill
 *
 * Returns the granularity of underlying alarm base clock
 */
static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;

476 477 478
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

479 480 481 482 483 484 485 486 487 488 489 490 491 492
	return hrtimer_get_res(baseid, tp);
}

/**
 * alarm_clock_get - posix clock_get interface
 * @which_clock: clockid
 * @tp: timespec to fill.
 *
 * Provides the underlying alarm base time.
 */
static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
{
	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];

493 494 495
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	*tp = ktime_to_timespec(base->gettime());
	return 0;
}

/**
 * alarm_timer_create - posix timer_create interface
 * @new_timer: k_itimer pointer to manage
 *
 * Initializes the k_itimer structure.
 */
static int alarm_timer_create(struct k_itimer *new_timer)
{
	enum  alarmtimer_type type;
	struct alarm_base *base;

511 512 513
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

514 515 516 517 518
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	type = clock2alarm(new_timer->it_clock);
	base = &alarm_bases[type];
519
	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520 521 522 523 524 525 526 527 528 529 530 531 532
	return 0;
}

/**
 * alarm_timer_get - posix timer_get interface
 * @new_timer: k_itimer pointer
 * @cur_setting: itimerspec data to fill
 *
 * Copies the itimerspec data out from the k_itimer
 */
static void alarm_timer_get(struct k_itimer *timr,
				struct itimerspec *cur_setting)
{
533 534
	memset(cur_setting, 0, sizeof(struct itimerspec));

535
	cur_setting->it_interval =
536
			ktime_to_timespec(timr->it.alarm.interval);
537
	cur_setting->it_value =
538
		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539 540 541 542 543 544 545 546 547 548 549
	return;
}

/**
 * alarm_timer_del - posix timer_del interface
 * @timr: k_itimer pointer to be deleted
 *
 * Cancels any programmed alarms for the given timer.
 */
static int alarm_timer_del(struct k_itimer *timr)
{
550 551 552
	if (!rtcdev)
		return -ENOTSUPP;

553 554 555
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	return 0;
}

/**
 * alarm_timer_set - posix timer_set interface
 * @timr: k_itimer pointer to be deleted
 * @flags: timer flags
 * @new_setting: itimerspec to be used
 * @old_setting: itimerspec being replaced
 *
 * Sets the timer to new_setting, and starts the timer.
 */
static int alarm_timer_set(struct k_itimer *timr, int flags,
				struct itimerspec *new_setting,
				struct itimerspec *old_setting)
{
572 573 574
	if (!rtcdev)
		return -ENOTSUPP;

575 576
	if (old_setting)
		alarm_timer_get(timr, old_setting);
577 578

	/* If the timer was already set, cancel it */
579 580
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;
581 582

	/* start the timer */
583 584 585
	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
	alarm_start(&timr->it.alarm.alarmtimer,
			timespec_to_ktime(new_setting->it_value));
586 587 588 589 590 591 592 593 594
	return 0;
}

/**
 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 * @alarm: ptr to alarm that fired
 *
 * Wakes up the task that set the alarmtimer
 */
595 596
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
								ktime_t now)
597 598 599 600 601 602
{
	struct task_struct *task = (struct task_struct *)alarm->data;

	alarm->data = NULL;
	if (task)
		wake_up_process(task);
603
	return ALARMTIMER_NORESTART;
604 605 606 607 608 609 610 611 612 613 614 615 616 617
}

/**
 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 * @alarm: ptr to alarmtimer
 * @absexp: absolute expiration time
 *
 * Sets the alarm timer and sleeps until it is fired or interrupted.
 */
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
{
	alarm->data = (void *)current;
	do {
		set_current_state(TASK_INTERRUPTIBLE);
618
		alarm_start(alarm, absexp);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		if (likely(alarm->data))
			schedule();

		alarm_cancel(alarm);
	} while (alarm->data && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	return (alarm->data == NULL);
}


/**
 * update_rmtp - Update remaining timespec value
 * @exp: expiration time
 * @type: timer type
 * @rmtp: user pointer to remaining timepsec value
 *
 * Helper function that fills in rmtp value with time between
 * now and the exp value
 */
static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
			struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(exp, alarm_bases[type].gettime());

	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;

}

/**
 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 * @restart: ptr to restart block
 *
 * Handles restarted clock_nanosleep calls
 */
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
667
	enum  alarmtimer_type type = restart->nanosleep.clockid;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	ktime_t exp;
	struct timespec __user  *rmtp;
	struct alarm alarm;
	int ret = 0;

	exp.tv64 = restart->nanosleep.expires;
	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	rmtp = restart->nanosleep.rmtp;
	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}


	/* The other values in restart are already filled in */
	ret = -ERESTART_RESTARTBLOCK;
out:
	return ret;
}

/**
 * alarm_timer_nsleep - alarmtimer nanosleep
 * @which_clock: clockid
 * @flags: determins abstime or relative
 * @tsreq: requested sleep time (abs or rel)
 * @rmtp: remaining sleep time saved
 *
 * Handles clock_nanosleep calls against _ALARM clockids
 */
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
		     struct timespec *tsreq, struct timespec __user *rmtp)
{
	enum  alarmtimer_type type = clock2alarm(which_clock);
	struct alarm alarm;
	ktime_t exp;
	int ret = 0;
	struct restart_block *restart;

714 715 716
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	exp = timespec_to_ktime(*tsreq);
	/* Convert (if necessary) to absolute time */
	if (flags != TIMER_ABSTIME) {
		ktime_t now = alarm_bases[type].gettime();
		exp = ktime_add(now, exp);
	}

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	/* abs timers don't set remaining time or restart */
	if (flags == TIMER_ABSTIME) {
		ret = -ERESTARTNOHAND;
		goto out;
	}

	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}

	restart = &current_thread_info()->restart_block;
	restart->fn = alarm_timer_nsleep_restart;
749
	restart->nanosleep.clockid = type;
750 751 752 753 754 755 756
	restart->nanosleep.expires = exp.tv64;
	restart->nanosleep.rmtp = rmtp;
	ret = -ERESTART_RESTARTBLOCK;

out:
	return ret;
}
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778


/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
	.suspend = alarmtimer_suspend,
};

static struct platform_driver alarmtimer_driver = {
	.driver = {
		.name = "alarmtimer",
		.pm = &alarmtimer_pm_ops,
	}
};

/**
 * alarmtimer_init - Initialize alarm timer code
 *
 * This function initializes the alarm bases and registers
 * the posix clock ids.
 */
static int __init alarmtimer_init(void)
{
779
	struct platform_device *pdev;
780 781
	int error = 0;
	int i;
782 783 784 785 786 787 788 789 790 791
	struct k_clock alarm_clock = {
		.clock_getres	= alarm_clock_getres,
		.clock_get	= alarm_clock_get,
		.timer_create	= alarm_timer_create,
		.timer_set	= alarm_timer_set,
		.timer_del	= alarm_timer_del,
		.timer_get	= alarm_timer_get,
		.nsleep		= alarm_timer_nsleep,
	};

792
	alarmtimer_rtc_timer_init();
793

794 795
	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796 797 798 799 800 801 802 803 804 805 806 807 808 809

	/* Initialize alarm bases */
	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		timerqueue_init_head(&alarm_bases[i].timerqueue);
		spin_lock_init(&alarm_bases[i].lock);
		hrtimer_init(&alarm_bases[i].timer,
				alarm_bases[i].base_clockid,
				HRTIMER_MODE_ABS);
		alarm_bases[i].timer.function = alarmtimer_fired;
	}
810

811 812 813 814
	error = alarmtimer_rtc_interface_setup();
	if (error)
		return error;

815
	error = platform_driver_register(&alarmtimer_driver);
816 817
	if (error)
		goto out_if;
818

819 820 821 822 823 824 825 826 827 828 829
	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
	if (IS_ERR(pdev)) {
		error = PTR_ERR(pdev);
		goto out_drv;
	}
	return 0;

out_drv:
	platform_driver_unregister(&alarmtimer_driver);
out_if:
	alarmtimer_rtc_interface_remove();
830 831 832
	return error;
}
device_initcall(alarmtimer_init);