i2c-nomadik.c 28.5 KB
Newer Older
1
/*
L
Linus Walleij 已提交
2
 * Copyright (C) 2009 ST-Ericsson SA
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2009 STMicroelectronics
 *
 * I2C master mode controller driver, used in Nomadik 8815
 * and Ux500 platforms.
 *
 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
 * Author: Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2, as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/module.h>
17
#include <linux/amba/bus.h>
18
#include <linux/slab.h>
19 20 21 22 23
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
R
Rabin Vincent 已提交
24
#include <linux/pm_runtime.h>
25
#include <linux/of.h>
26
#include <linux/pinctrl/consumer.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

#define DRIVER_NAME "nmk-i2c"

/* I2C Controller register offsets */
#define I2C_CR		(0x000)
#define I2C_SCR		(0x004)
#define I2C_HSMCR	(0x008)
#define I2C_MCR		(0x00C)
#define I2C_TFR		(0x010)
#define I2C_SR		(0x014)
#define I2C_RFR		(0x018)
#define I2C_TFTR	(0x01C)
#define I2C_RFTR	(0x020)
#define I2C_DMAR	(0x024)
#define I2C_BRCR	(0x028)
#define I2C_IMSCR	(0x02C)
#define I2C_RISR	(0x030)
#define I2C_MISR	(0x034)
#define I2C_ICR		(0x038)

/* Control registers */
#define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
#define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
#define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
#define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
#define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
#define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
#define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
#define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
#define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
#define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
#define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
#define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
#define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */

/* Master controller (MCR) register */
#define I2C_MCR_OP		(0x1 << 0)	/* Operation */
#define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
65
#define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
66 67
#define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
#define I2C_MCR_AM		(0x3 << 12)	/* Address type */
68 69
#define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
#define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
70 71 72 73 74 75 76 77 78

/* Status register (SR) */
#define I2C_SR_OP		(0x3 << 0)	/* Operation */
#define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
#define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
#define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
#define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */

/* Interrupt mask set/clear (IMSCR) bits */
79
#define I2C_IT_TXFE		(0x1 << 0)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define I2C_IT_TXFNE		(0x1 << 1)
#define I2C_IT_TXFF		(0x1 << 2)
#define I2C_IT_TXFOVR		(0x1 << 3)
#define I2C_IT_RXFE		(0x1 << 4)
#define I2C_IT_RXFNF		(0x1 << 5)
#define I2C_IT_RXFF		(0x1 << 6)
#define I2C_IT_RFSR		(0x1 << 16)
#define I2C_IT_RFSE		(0x1 << 17)
#define I2C_IT_WTSR		(0x1 << 18)
#define I2C_IT_MTD		(0x1 << 19)
#define I2C_IT_STD		(0x1 << 20)
#define I2C_IT_MAL		(0x1 << 24)
#define I2C_IT_BERR		(0x1 << 25)
#define I2C_IT_MTDWS		(0x1 << 28)

#define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))

/* some bits in ICR are reserved */
#define I2C_CLEAR_ALL_INTS	0x131f007f

/* first three msb bits are reserved */
#define IRQ_MASK(mask)		(mask & 0x1fffffff)

/* maximum threshold value */
#define MAX_I2C_FIFO_THRESHOLD	15

106 107 108 109 110 111 112
enum i2c_freq_mode {
	I2C_FREQ_MODE_STANDARD,		/* up to 100 Kb/s */
	I2C_FREQ_MODE_FAST,		/* up to 400 Kb/s */
	I2C_FREQ_MODE_HIGH_SPEED,	/* up to 3.4 Mb/s */
	I2C_FREQ_MODE_FAST_PLUS,	/* up to 1 Mb/s */
};

113 114 115 116 117 118 119 120 121 122
/**
 * struct i2c_vendor_data - per-vendor variations
 * @has_mtdws: variant has the MTDWS bit
 * @fifodepth: variant FIFO depth
 */
struct i2c_vendor_data {
	bool has_mtdws;
	u32 fifodepth;
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
enum i2c_status {
	I2C_NOP,
	I2C_ON_GOING,
	I2C_OK,
	I2C_ABORT
};

/* operation */
enum i2c_operation {
	I2C_NO_OPERATION = 0xff,
	I2C_WRITE = 0x00,
	I2C_READ = 0x01
};

/**
 * struct i2c_nmk_client - client specific data
 * @slave_adr: 7-bit slave address
L
Lucas De Marchi 已提交
140
 * @count: no. bytes to be transferred
141
 * @buffer: client data buffer
L
Lucas De Marchi 已提交
142
 * @xfer_bytes: bytes transferred till now
143 144 145 146 147 148 149 150 151 152 153
 * @operation: current I2C operation
 */
struct i2c_nmk_client {
	unsigned short		slave_adr;
	unsigned long		count;
	unsigned char		*buffer;
	unsigned long		xfer_bytes;
	enum i2c_operation	operation;
};

/**
154
 * struct nmk_i2c_dev - private data structure of the controller.
155
 * @vendor: vendor data for this variant.
156
 * @adev: parent amba device.
157 158 159 160 161
 * @adap: corresponding I2C adapter.
 * @irq: interrupt line for the controller.
 * @virtbase: virtual io memory area.
 * @clk: hardware i2c block clock.
 * @cli: holder of client specific data.
162 163 164 165 166
 * @clk_freq: clock frequency for the operation mode
 * @tft: Tx FIFO Threshold in bytes
 * @rft: Rx FIFO Threshold in bytes
 * @timeout Slave response timeout (ms)
 * @sm: speed mode
167 168 169 170
 * @stop: stop condition.
 * @xfer_complete: acknowledge completion for a I2C message.
 * @result: controller propogated result.
 * @busy: Busy doing transfer.
171 172
 */
struct nmk_i2c_dev {
173
	struct i2c_vendor_data		*vendor;
174
	struct amba_device		*adev;
175 176
	struct i2c_adapter		adap;
	int				irq;
177 178 179
	void __iomem			*virtbase;
	struct clk			*clk;
	struct i2c_nmk_client		cli;
180 181 182 183 184
	u32				clk_freq;
	unsigned char			tft;
	unsigned char			rft;
	int				timeout;
	enum i2c_freq_mode		sm;
185
	int				stop;
186
	struct completion		xfer_complete;
187
	int				result;
J
Jonas Aberg 已提交
188
	bool				busy;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
};

/* controller's abort causes */
static const char *abort_causes[] = {
	"no ack received after address transmission",
	"no ack received during data phase",
	"ack received after xmission of master code",
	"master lost arbitration",
	"slave restarts",
	"slave reset",
	"overflow, maxsize is 2047 bytes",
};

static inline void i2c_set_bit(void __iomem *reg, u32 mask)
{
	writel(readl(reg) | mask, reg);
}

static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
{
	writel(readl(reg) & ~mask, reg);
}

/**
 * flush_i2c_fifo() - This function flushes the I2C FIFO
 * @dev: private data of I2C Driver
 *
 * This function flushes the I2C Tx and Rx FIFOs. It returns
 * 0 on successful flushing of FIFO
 */
static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
{
#define LOOP_ATTEMPTS 10
	int i;
	unsigned long timeout;

	/*
	 * flush the transmit and receive FIFO. The flushing
	 * operation takes several cycles before to be completed.
	 * On the completion, the I2C internal logic clears these
	 * bits, until then no one must access Tx, Rx FIFO and
	 * should poll on these bits waiting for the completion.
	 */
	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);

	for (i = 0; i < LOOP_ATTEMPTS; i++) {
235
		timeout = jiffies + dev->adap.timeout;
236 237 238 239 240 241 242 243

		while (!time_after(jiffies, timeout)) {
			if ((readl(dev->virtbase + I2C_CR) &
				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
					return 0;
		}
	}

244
	dev_err(&dev->adev->dev,
245 246
		"flushing operation timed out giving up after %d attempts",
		LOOP_ATTEMPTS);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	return -ETIMEDOUT;
}

/**
 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
 * @dev: private data of I2C Driver
 */
static void disable_all_interrupts(struct nmk_i2c_dev *dev)
{
	u32 mask = IRQ_MASK(0);
	writel(mask, dev->virtbase + I2C_IMSCR);
}

/**
 * clear_all_interrupts() - Clear all interrupts of I2C Controller
 * @dev: private data of I2C Driver
 */
static void clear_all_interrupts(struct nmk_i2c_dev *dev)
{
	u32 mask;
	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
	writel(mask, dev->virtbase + I2C_ICR);
}

/**
 * init_hw() - initialize the I2C hardware
 * @dev: private data of I2C Driver
 */
static int init_hw(struct nmk_i2c_dev *dev)
{
	int stat;

	stat = flush_i2c_fifo(dev);
	if (stat)
J
Jonas Aberg 已提交
282
		goto exit;
283 284 285 286 287 288 289 290 291 292

	/* disable the controller */
	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);

	disable_all_interrupts(dev);

	clear_all_interrupts(dev);

	dev->cli.operation = I2C_NO_OPERATION;

J
Jonas Aberg 已提交
293 294
exit:
	return stat;
295 296 297
}

/* enable peripheral, master mode operation */
298
#define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
299 300 301 302

/**
 * load_i2c_mcr_reg() - load the MCR register
 * @dev: private data of controller
303
 * @flags: message flags
304
 */
305
static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
306 307
{
	u32 mcr = 0;
308
	unsigned short slave_adr_3msb_bits;
309 310 311

	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	if (unlikely(flags & I2C_M_TEN)) {
		/* 10-bit address transaction */
		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
		/*
		 * Get the top 3 bits.
		 * EA10 represents extended address in MCR. This includes
		 * the extension (MSB bits) of the 7 bit address loaded
		 * in A7
		 */
		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;

		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
	} else {
		/* 7-bit address transaction */
		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
	}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	/* start byte procedure not applied */
	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);

	/* check the operation, master read/write? */
	if (dev->cli.operation == I2C_WRITE)
		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
	else
		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);

	/* stop or repeated start? */
	if (dev->stop)
		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
	else
		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));

	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);

	return mcr;
}

/**
 * setup_i2c_controller() - setup the controller
 * @dev: private data of controller
 */
static void setup_i2c_controller(struct nmk_i2c_dev *dev)
{
	u32 brcr1, brcr2;
	u32 i2c_clk, div;
357 358
	u32 ns;
	u16 slsu;
359 360 361 362 363 364 365

	writel(0x0, dev->virtbase + I2C_CR);
	writel(0x0, dev->virtbase + I2C_HSMCR);
	writel(0x0, dev->virtbase + I2C_TFTR);
	writel(0x0, dev->virtbase + I2C_RFTR);
	writel(0x0, dev->virtbase + I2C_DMAR);

366 367
	i2c_clk = clk_get_rate(dev->clk);

368 369 370 371
	/*
	 * set the slsu:
	 *
	 * slsu defines the data setup time after SCL clock
372 373 374 375 376 377 378
	 * stretching in terms of i2c clk cycles + 1 (zero means
	 * "wait one cycle"), the needed setup time for the three
	 * modes are 250ns, 100ns, 10ns respectively.
	 *
	 * As the time for one cycle T in nanoseconds is
	 * T = (1/f) * 1000000000 =>
	 * slsu = cycles / (1000000000 / f) + 1
379
	 */
380
	ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
381
	switch (dev->sm) {
382 383 384 385 386 387 388 389 390 391 392 393 394
	case I2C_FREQ_MODE_FAST:
	case I2C_FREQ_MODE_FAST_PLUS:
		slsu = DIV_ROUND_UP(100, ns); /* Fast */
		break;
	case I2C_FREQ_MODE_HIGH_SPEED:
		slsu = DIV_ROUND_UP(10, ns); /* High */
		break;
	case I2C_FREQ_MODE_STANDARD:
	default:
		slsu = DIV_ROUND_UP(250, ns); /* Standard */
		break;
	}
	slsu += 1;
395

396 397
	dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
	writel(slsu << 16, dev->virtbase + I2C_SCR);
398 399 400 401 402 403

	/*
	 * The spec says, in case of std. mode the divider is
	 * 2 whereas it is 3 for fast and fastplus mode of
	 * operation. TODO - high speed support.
	 */
404
	div = (dev->clk_freq > 100000) ? 3 : 2;
405 406 407 408 409 410 411 412 413

	/*
	 * generate the mask for baud rate counters. The controller
	 * has two baud rate counters. One is used for High speed
	 * operation, and the other is for std, fast mode, fast mode
	 * plus operation. Currently we do not supprt high speed mode
	 * so set brcr1 to 0.
	 */
	brcr1 = 0 << 16;
414
	brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
415 416 417 418 419 420 421

	/* set the baud rate counter register */
	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);

	/*
	 * set the speed mode. Currently we support
	 * only standard and fast mode of operation
L
Lucas De Marchi 已提交
422
	 * TODO - support for fast mode plus (up to 1Mb/s)
423 424
	 * and high speed (up to 3.4 Mb/s)
	 */
425
	if (dev->sm > I2C_FREQ_MODE_FAST) {
426
		dev_err(&dev->adev->dev,
427
			"do not support this mode defaulting to std. mode\n");
428 429 430 431 432
		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
		writel(I2C_FREQ_MODE_STANDARD << 4,
				dev->virtbase + I2C_CR);
	}
433
	writel(dev->sm << 4, dev->virtbase + I2C_CR);
434 435

	/* set the Tx and Rx FIFO threshold */
436 437
	writel(dev->tft, dev->virtbase + I2C_TFTR);
	writel(dev->rft, dev->virtbase + I2C_RFTR);
438 439 440 441 442
}

/**
 * read_i2c() - Read from I2C client device
 * @dev: private data of I2C Driver
443
 * @flags: message flags
444 445 446 447 448
 *
 * This function reads from i2c client device when controller is in
 * master mode. There is a completion timeout. If there is no transfer
 * before timeout error is returned.
 */
449
static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
450 451
{
	u32 status = 0;
452
	u32 mcr, irq_mask;
453 454
	int timeout;

455
	mcr = load_i2c_mcr_reg(dev, flags);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	writel(mcr, dev->virtbase + I2C_MCR);

	/* load the current CR value */
	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
			dev->virtbase + I2C_CR);

	/* enable the controller */
	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);

	init_completion(&dev->xfer_complete);

	/* enable interrupts by setting the mask */
	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
			I2C_IT_MAL | I2C_IT_BERR);

471
	if (dev->stop || !dev->vendor->has_mtdws)
472 473 474 475 476 477 478 479 480
		irq_mask |= I2C_IT_MTD;
	else
		irq_mask |= I2C_IT_MTDWS;

	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);

	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
			dev->virtbase + I2C_IMSCR);

481
	timeout = wait_for_completion_timeout(
482
		&dev->xfer_complete, dev->adap.timeout);
483 484

	if (timeout == 0) {
485
		/* Controller timed out */
486
		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
487
				dev->cli.slave_adr);
488 489 490 491 492
		status = -ETIMEDOUT;
	}
	return status;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
{
	int count;

	for (count = (no_bytes - 2);
			(count > 0) &&
			(dev->cli.count != 0);
			count--) {
		/* write to the Tx FIFO */
		writeb(*dev->cli.buffer,
			dev->virtbase + I2C_TFR);
		dev->cli.buffer++;
		dev->cli.count--;
		dev->cli.xfer_bytes++;
	}

}

511 512 513
/**
 * write_i2c() - Write data to I2C client.
 * @dev: private data of I2C Driver
514
 * @flags: message flags
515 516 517
 *
 * This function writes data to I2C client
 */
518
static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
519 520
{
	u32 status = 0;
521
	u32 mcr, irq_mask;
522 523
	int timeout;

524
	mcr = load_i2c_mcr_reg(dev, flags);
525 526 527 528 529 530 531 532 533 534 535 536 537

	writel(mcr, dev->virtbase + I2C_MCR);

	/* load the current CR value */
	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
			dev->virtbase + I2C_CR);

	/* enable the controller */
	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);

	init_completion(&dev->xfer_complete);

	/* enable interrupts by settings the masks */
538 539 540 541 542 543 544
	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);

	/* Fill the TX FIFO with transmit data */
	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);

	if (dev->cli.count != 0)
		irq_mask |= I2C_IT_TXFNE;
545 546 547 548 549 550

	/*
	 * check if we want to transfer a single or multiple bytes, if so
	 * set the MTDWS bit (Master Transaction Done Without Stop)
	 * to start repeated start operation
	 */
551
	if (dev->stop || !dev->vendor->has_mtdws)
552 553 554 555 556 557 558 559 560
		irq_mask |= I2C_IT_MTD;
	else
		irq_mask |= I2C_IT_MTDWS;

	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);

	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
			dev->virtbase + I2C_IMSCR);

561
	timeout = wait_for_completion_timeout(
562
		&dev->xfer_complete, dev->adap.timeout);
563 564

	if (timeout == 0) {
565
		/* Controller timed out */
566
		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
567
				dev->cli.slave_adr);
568 569 570 571 572 573
		status = -ETIMEDOUT;
	}

	return status;
}

574 575 576 577 578 579 580 581 582 583 584 585
/**
 * nmk_i2c_xfer_one() - transmit a single I2C message
 * @dev: device with a message encoded into it
 * @flags: message flags
 */
static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
{
	int status;

	if (flags & I2C_M_RD) {
		/* read operation */
		dev->cli.operation = I2C_READ;
586
		status = read_i2c(dev, flags);
587 588 589
	} else {
		/* write operation */
		dev->cli.operation = I2C_WRITE;
590
		status = write_i2c(dev, flags);
591 592 593 594 595 596 597 598 599 600 601 602 603 604
	}

	if (status || (dev->result)) {
		u32 i2c_sr;
		u32 cause;

		i2c_sr = readl(dev->virtbase + I2C_SR);
		/*
		 * Check if the controller I2C operation status
		 * is set to ABORT(11b).
		 */
		if (((i2c_sr >> 2) & 0x3) == 0x3) {
			/* get the abort cause */
			cause =	(i2c_sr >> 4) & 0x7;
605
			dev_err(&dev->adev->dev, "%s\n",
606
				cause >= ARRAY_SIZE(abort_causes) ?
607 608 609 610 611 612 613 614 615 616 617 618
				"unknown reason" :
				abort_causes[cause]);
		}

		(void) init_hw(dev);

		status = status ? status : dev->result;
	}

	return status;
}

619 620
/**
 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
L
Linus Walleij 已提交
621 622 623
 * @i2c_adap: Adapter pointer to the controller
 * @msgs: Pointer to data to be written.
 * @num_msgs: Number of messages to be executed
624 625 626 627 628 629 630
 *
 * This is the function called by the generic kernel i2c_transfer()
 * or i2c_smbus...() API calls. Note that this code is protected by the
 * semaphore set in the kernel i2c_transfer() function.
 *
 * NOTE:
 * READ TRANSFER : We impose a restriction of the first message to be the
631 632 633 634 635 636 637
 *		index message for any read transaction.
 *		- a no index is coded as '0',
 *		- 2byte big endian index is coded as '3'
 *		!!! msg[0].buf holds the actual index.
 *		This is compatible with generic messages of smbus emulator
 *		that send a one byte index.
 *		eg. a I2C transation to read 2 bytes from index 0
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
 *			idx = 0;
 *			msg[0].addr = client->addr;
 *			msg[0].flags = 0x0;
 *			msg[0].len = 1;
 *			msg[0].buf = &idx;
 *
 *			msg[1].addr = client->addr;
 *			msg[1].flags = I2C_M_RD;
 *			msg[1].len = 2;
 *			msg[1].buf = rd_buff
 *			i2c_transfer(adap, msg, 2);
 *
 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
 *		If you want to emulate an SMBUS write transaction put the
 *		index as first byte(or first and second) in the payload.
 *		eg. a I2C transation to write 2 bytes from index 1
 *			wr_buff[0] = 0x1;
 *			wr_buff[1] = 0x23;
 *			wr_buff[2] = 0x46;
 *			msg[0].flags = 0x0;
 *			msg[0].len = 3;
 *			msg[0].buf = wr_buff;
 *			i2c_transfer(adap, msg, 1);
 *
 * To read or write a block of data (multiple bytes) using SMBUS emulation
 * please use the i2c_smbus_read_i2c_block_data()
 * or i2c_smbus_write_i2c_block_data() API
 */
static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
		struct i2c_msg msgs[], int num_msgs)
{
669
	int status = 0;
670 671
	int i;
	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
672
	int j;
673

J
Jonas Aberg 已提交
674 675
	dev->busy = true;

676
	pm_runtime_get_sync(&dev->adev->dev);
J
Jonas Aberg 已提交
677

678
	/* Attempt three times to send the message queue */
679 680 681
	for (j = 0; j < 3; j++) {
		/* setup the i2c controller */
		setup_i2c_controller(dev);
682

683 684 685 686 687 688 689
		for (i = 0; i < num_msgs; i++) {
			dev->cli.slave_adr	= msgs[i].addr;
			dev->cli.buffer		= msgs[i].buf;
			dev->cli.count		= msgs[i].len;
			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
			dev->result = 0;

690 691
			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
			if (status != 0)
692
				break;
693
		}
694 695
		if (status == 0)
			break;
696
	}
J
Jonas Aberg 已提交
697

698
	pm_runtime_put_sync(&dev->adev->dev);
J
Jonas Aberg 已提交
699 700

	dev->busy = false;
L
Linus Walleij 已提交
701

702 703 704 705 706 707 708 709 710 711
	/* return the no. messages processed */
	if (status)
		return status;
	else
		return num_msgs;
}

/**
 * disable_interrupts() - disable the interrupts
 * @dev: private data of controller
L
Linus Walleij 已提交
712
 * @irq: interrupt number
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
 */
static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
{
	irq = IRQ_MASK(irq);
	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
			dev->virtbase + I2C_IMSCR);
	return 0;
}

/**
 * i2c_irq_handler() - interrupt routine
 * @irq: interrupt number
 * @arg: data passed to the handler
 *
 * This is the interrupt handler for the i2c driver. Currently
 * it handles the major interrupts like Rx & Tx FIFO management
 * interrupts, master transaction interrupts, arbitration and
 * bus error interrupts. The rest of the interrupts are treated as
 * unhandled.
 */
static irqreturn_t i2c_irq_handler(int irq, void *arg)
{
	struct nmk_i2c_dev *dev = arg;
	u32 tft, rft;
	u32 count;
738
	u32 misr, src;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

	/* load Tx FIFO and Rx FIFO threshold values */
	tft = readl(dev->virtbase + I2C_TFTR);
	rft = readl(dev->virtbase + I2C_RFTR);

	/* read interrupt status register */
	misr = readl(dev->virtbase + I2C_MISR);

	src = __ffs(misr);
	switch ((1 << src)) {

	/* Transmit FIFO nearly empty interrupt */
	case I2C_IT_TXFNE:
	{
		if (dev->cli.operation == I2C_READ) {
			/*
			 * in read operation why do we care for writing?
			 * so disable the Transmit FIFO interrupt
			 */
			disable_interrupts(dev, I2C_IT_TXFNE);
		} else {
760
			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
			/*
			 * if done, close the transfer by disabling the
			 * corresponding TXFNE interrupt
			 */
			if (dev->cli.count == 0)
				disable_interrupts(dev,	I2C_IT_TXFNE);
		}
	}
	break;

	/*
	 * Rx FIFO nearly full interrupt.
	 * This is set when the numer of entries in Rx FIFO is
	 * greater or equal than the threshold value programmed
	 * in RFT
	 */
	case I2C_IT_RXFNF:
		for (count = rft; count > 0; count--) {
			/* Read the Rx FIFO */
			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
			dev->cli.buffer++;
		}
		dev->cli.count -= rft;
		dev->cli.xfer_bytes += rft;
		break;

	/* Rx FIFO full */
	case I2C_IT_RXFF:
		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
			dev->cli.buffer++;
		}
		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
		break;

	/* Master Transaction Done with/without stop */
	case I2C_IT_MTD:
	case I2C_IT_MTDWS:
		if (dev->cli.operation == I2C_READ) {
801 802
			while (!(readl(dev->virtbase + I2C_RISR)
				 & I2C_IT_RXFE)) {
803 804 805 806 807 808 809 810 811 812
				if (dev->cli.count == 0)
					break;
				*dev->cli.buffer =
					readb(dev->virtbase + I2C_RFR);
				dev->cli.buffer++;
				dev->cli.count--;
				dev->cli.xfer_bytes++;
			}
		}

813 814
		disable_all_interrupts(dev);
		clear_all_interrupts(dev);
815 816

		if (dev->cli.count) {
817
			dev->result = -EIO;
818
			dev_err(&dev->adev->dev,
819 820
				"%lu bytes still remain to be xfered\n",
				dev->cli.count);
821 822 823 824 825 826 827 828
			(void) init_hw(dev);
		}
		complete(&dev->xfer_complete);

		break;

	/* Master Arbitration lost interrupt */
	case I2C_IT_MAL:
829
		dev->result = -EIO;
830 831 832 833 834 835 836 837 838 839 840 841 842
		(void) init_hw(dev);

		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
		complete(&dev->xfer_complete);

		break;

	/*
	 * Bus Error interrupt.
	 * This happens when an unexpected start/stop condition occurs
	 * during the transaction.
	 */
	case I2C_IT_BERR:
843
		dev->result = -EIO;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		/* get the status */
		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
			(void) init_hw(dev);

		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
		complete(&dev->xfer_complete);

		break;

	/*
	 * Tx FIFO overrun interrupt.
	 * This is set when a write operation in Tx FIFO is performed and
	 * the Tx FIFO is full.
	 */
	case I2C_IT_TXFOVR:
859
		dev->result = -EIO;
860 861
		(void) init_hw(dev);

862
		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
863 864 865 866 867 868 869 870 871 872 873 874
		complete(&dev->xfer_complete);

		break;

	/* unhandled interrupts by this driver - TODO*/
	case I2C_IT_TXFE:
	case I2C_IT_TXFF:
	case I2C_IT_RXFE:
	case I2C_IT_RFSR:
	case I2C_IT_RFSE:
	case I2C_IT_WTSR:
	case I2C_IT_STD:
875
		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
876 877
		break;
	default:
878
		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
879 880 881 882 883 884
		break;
	}

	return IRQ_HANDLED;
}

J
Jonas Aberg 已提交
885 886

#ifdef CONFIG_PM
R
Rabin Vincent 已提交
887
static int nmk_i2c_suspend(struct device *dev)
J
Jonas Aberg 已提交
888
{
889 890
	struct amba_device *adev = to_amba_device(dev);
	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
J
Jonas Aberg 已提交
891

R
Rabin Vincent 已提交
892
	if (nmk_i2c->busy)
J
Jonas Aberg 已提交
893
		return -EBUSY;
R
Rabin Vincent 已提交
894

895
	pinctrl_pm_select_sleep_state(dev);
896

R
Rabin Vincent 已提交
897 898 899 900 901
	return 0;
}

static int nmk_i2c_resume(struct device *dev)
{
902
	/* First go to the default state */
903
	pinctrl_pm_select_default_state(dev);
904
	/* Then let's idle the pins until the next transfer happens */
905 906
	pinctrl_pm_select_idle_state(dev);

R
Rabin Vincent 已提交
907
	return 0;
J
Jonas Aberg 已提交
908 909 910
}
#else
#define nmk_i2c_suspend	NULL
R
Rabin Vincent 已提交
911
#define nmk_i2c_resume	NULL
J
Jonas Aberg 已提交
912 913
#endif

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
#ifdef CONFIG_PM
static int nmk_i2c_runtime_suspend(struct device *dev)
{
	struct amba_device *adev = to_amba_device(dev);
	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);

	clk_disable_unprepare(nmk_i2c->clk);
	pinctrl_pm_select_idle_state(dev);
	return 0;
}

static int nmk_i2c_runtime_resume(struct device *dev)
{
	struct amba_device *adev = to_amba_device(dev);
	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
	int ret;

	ret = clk_prepare_enable(nmk_i2c->clk);
	if (ret) {
		dev_err(dev, "can't prepare_enable clock\n");
		return ret;
	}

	pinctrl_pm_select_default_state(dev);

	ret = init_hw(nmk_i2c);
	if (ret) {
		clk_disable_unprepare(nmk_i2c->clk);
		pinctrl_pm_select_idle_state(dev);
	}

	return ret;
}
#endif

R
Rabin Vincent 已提交
949 950 951 952 953 954 955 956
/*
 * We use noirq so that we suspend late and resume before the wakeup interrupt
 * to ensure that we do the !pm_runtime_suspended() check in resume before
 * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
 */
static const struct dev_pm_ops nmk_i2c_pm = {
	.suspend_noirq	= nmk_i2c_suspend,
	.resume_noirq	= nmk_i2c_resume,
957 958 959
	SET_PM_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
			nmk_i2c_runtime_resume,
			NULL)
R
Rabin Vincent 已提交
960 961
};

962 963
static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
{
964
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
965 966 967 968 969 970 971
}

static const struct i2c_algorithm nmk_i2c_algo = {
	.master_xfer	= nmk_i2c_xfer,
	.functionality	= nmk_i2c_functionality
};

972
static void nmk_i2c_of_probe(struct device_node *np,
973
			     struct nmk_i2c_dev *nmk)
974
{
975 976 977
	/* Default to 100 kHz if no frequency is given in the node */
	if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
		nmk->clk_freq = 100000;
978 979

	/* This driver only supports 'standard' and 'fast' modes of operation. */
980 981
	if (nmk->clk_freq <= 100000)
		nmk->sm = I2C_FREQ_MODE_STANDARD;
982
	else
983 984 985 986
		nmk->sm = I2C_FREQ_MODE_FAST;
	nmk->tft = 1; /* Tx FIFO threshold */
	nmk->rft = 8; /* Rx FIFO threshold */
	nmk->timeout = 200; /* Slave response timeout(ms) */
987 988
}

989
static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
990 991
{
	int ret = 0;
992
	struct device_node *np = adev->dev.of_node;
993 994
	struct nmk_i2c_dev	*dev;
	struct i2c_adapter *adap;
995 996
	struct i2c_vendor_data *vendor = id->data;
	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
997

998
	dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
999
	if (!dev) {
1000
		dev_err(&adev->dev, "cannot allocate memory\n");
1001 1002 1003
		ret = -ENOMEM;
		goto err_no_mem;
	}
1004
	dev->vendor = vendor;
J
Jonas Aberg 已提交
1005
	dev->busy = false;
1006
	dev->adev = adev;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	nmk_i2c_of_probe(np, dev);

	if (dev->tft > max_fifo_threshold) {
		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
			 dev->tft, max_fifo_threshold);
		dev->tft = max_fifo_threshold;
	}

	if (dev->rft > max_fifo_threshold) {
		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
			dev->rft, max_fifo_threshold);
		dev->rft = max_fifo_threshold;
	}

1021
	amba_set_drvdata(adev, dev);
1022

1023 1024 1025
	dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
				resource_size(&adev->res));
	if (IS_ERR(dev->virtbase)) {
1026
		ret = -ENOMEM;
1027
		goto err_no_mem;
1028 1029
	}

1030
	dev->irq = adev->irq[0];
1031
	ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1032 1033
				DRIVER_NAME, dev);
	if (ret) {
1034
		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1035
		goto err_no_mem;
1036 1037
	}

1038
	pm_suspend_ignore_children(&adev->dev, true);
R
Rabin Vincent 已提交
1039

1040
	dev->clk = devm_clk_get(&adev->dev, NULL);
1041
	if (IS_ERR(dev->clk)) {
1042
		dev_err(&adev->dev, "could not get i2c clock\n");
1043
		ret = PTR_ERR(dev->clk);
1044
		goto err_no_mem;
1045 1046
	}

1047 1048 1049 1050 1051 1052 1053 1054
	ret = clk_prepare_enable(dev->clk);
	if (ret) {
		dev_err(&adev->dev, "can't prepare_enable clock\n");
		goto err_no_mem;
	}

	init_hw(dev);

1055
	adap = &dev->adap;
1056
	adap->dev.of_node = np;
1057
	adap->dev.parent = &adev->dev;
1058 1059 1060
	adap->owner	= THIS_MODULE;
	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
	adap->algo	= &nmk_i2c_algo;
1061
	adap->timeout	= msecs_to_jiffies(dev->timeout);
1062
	snprintf(adap->name, sizeof(adap->name),
1063
		 "Nomadik I2C at %pR", &adev->res);
1064 1065 1066

	i2c_set_adapdata(adap, dev);

1067
	dev_info(&adev->dev,
1068 1069
		 "initialize %s on virtual base %p\n",
		 adap->name, dev->virtbase);
1070

1071
	ret = i2c_add_adapter(adap);
1072
	if (ret) {
1073
		dev_err(&adev->dev, "failed to add adapter\n");
1074
		goto err_no_adap;
1075 1076
	}

1077 1078
	pm_runtime_put(&adev->dev);

1079 1080
	return 0;

1081 1082
 err_no_adap:
	clk_disable_unprepare(dev->clk);
1083 1084 1085 1086 1087
 err_no_mem:

	return ret;
}

1088
static int nmk_i2c_remove(struct amba_device *adev)
1089
{
1090 1091
	struct resource *res = &adev->res;
	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1092 1093 1094 1095 1096 1097 1098

	i2c_del_adapter(&dev->adap);
	flush_i2c_fifo(dev);
	disable_all_interrupts(dev);
	clear_all_interrupts(dev);
	/* disable the controller */
	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1099
	clk_disable_unprepare(dev->clk);
1100 1101
	if (res)
		release_mem_region(res->start, resource_size(res));
1102 1103 1104 1105

	return 0;
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static struct i2c_vendor_data vendor_stn8815 = {
	.has_mtdws = false,
	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
};

static struct i2c_vendor_data vendor_db8500 = {
	.has_mtdws = true,
	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
};

1116 1117 1118 1119
static struct amba_id nmk_i2c_ids[] = {
	{
		.id	= 0x00180024,
		.mask	= 0x00ffffff,
1120
		.data	= &vendor_stn8815,
1121 1122 1123 1124
	},
	{
		.id	= 0x00380024,
		.mask	= 0x00ffffff,
1125
		.data	= &vendor_db8500,
1126 1127 1128 1129 1130 1131 1132 1133
	},
	{},
};

MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);

static struct amba_driver nmk_i2c_driver = {
	.drv = {
1134 1135
		.owner = THIS_MODULE,
		.name = DRIVER_NAME,
R
Rabin Vincent 已提交
1136
		.pm = &nmk_i2c_pm,
1137
	},
1138
	.id_table = nmk_i2c_ids,
1139
	.probe = nmk_i2c_probe,
1140
	.remove = nmk_i2c_remove,
1141 1142 1143 1144
};

static int __init nmk_i2c_init(void)
{
1145
	return amba_driver_register(&nmk_i2c_driver);
1146 1147 1148 1149
}

static void __exit nmk_i2c_exit(void)
{
1150
	amba_driver_unregister(&nmk_i2c_driver);
1151 1152 1153 1154 1155 1156 1157 1158
}

subsys_initcall(nmk_i2c_init);
module_exit(nmk_i2c_exit);

MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
MODULE_LICENSE("GPL");