i2c-nomadik.c 28.1 KB
Newer Older
1
/*
L
Linus Walleij 已提交
2
 * Copyright (C) 2009 ST-Ericsson SA
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2009 STMicroelectronics
 *
 * I2C master mode controller driver, used in Nomadik 8815
 * and Ux500 platforms.
 *
 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
 * Author: Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2, as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/module.h>
17
#include <linux/amba/bus.h>
18
#include <linux/slab.h>
19 20 21 22 23
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
R
Rabin Vincent 已提交
24
#include <linux/pm_runtime.h>
25
#include <linux/of.h>
26
#include <linux/pinctrl/consumer.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

#define DRIVER_NAME "nmk-i2c"

/* I2C Controller register offsets */
#define I2C_CR		(0x000)
#define I2C_SCR		(0x004)
#define I2C_HSMCR	(0x008)
#define I2C_MCR		(0x00C)
#define I2C_TFR		(0x010)
#define I2C_SR		(0x014)
#define I2C_RFR		(0x018)
#define I2C_TFTR	(0x01C)
#define I2C_RFTR	(0x020)
#define I2C_DMAR	(0x024)
#define I2C_BRCR	(0x028)
#define I2C_IMSCR	(0x02C)
#define I2C_RISR	(0x030)
#define I2C_MISR	(0x034)
#define I2C_ICR		(0x038)

/* Control registers */
#define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
#define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
#define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
#define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
#define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
#define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
#define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
#define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
#define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
#define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
#define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
#define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
#define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */

/* Master controller (MCR) register */
#define I2C_MCR_OP		(0x1 << 0)	/* Operation */
#define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
65
#define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
66 67
#define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
#define I2C_MCR_AM		(0x3 << 12)	/* Address type */
68 69
#define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
#define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
70 71 72 73 74 75 76 77 78

/* Status register (SR) */
#define I2C_SR_OP		(0x3 << 0)	/* Operation */
#define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
#define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
#define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
#define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */

/* Interrupt mask set/clear (IMSCR) bits */
79
#define I2C_IT_TXFE		(0x1 << 0)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define I2C_IT_TXFNE		(0x1 << 1)
#define I2C_IT_TXFF		(0x1 << 2)
#define I2C_IT_TXFOVR		(0x1 << 3)
#define I2C_IT_RXFE		(0x1 << 4)
#define I2C_IT_RXFNF		(0x1 << 5)
#define I2C_IT_RXFF		(0x1 << 6)
#define I2C_IT_RFSR		(0x1 << 16)
#define I2C_IT_RFSE		(0x1 << 17)
#define I2C_IT_WTSR		(0x1 << 18)
#define I2C_IT_MTD		(0x1 << 19)
#define I2C_IT_STD		(0x1 << 20)
#define I2C_IT_MAL		(0x1 << 24)
#define I2C_IT_BERR		(0x1 << 25)
#define I2C_IT_MTDWS		(0x1 << 28)

#define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))

/* some bits in ICR are reserved */
#define I2C_CLEAR_ALL_INTS	0x131f007f

/* first three msb bits are reserved */
#define IRQ_MASK(mask)		(mask & 0x1fffffff)

/* maximum threshold value */
#define MAX_I2C_FIFO_THRESHOLD	15

106 107 108 109 110 111 112
enum i2c_freq_mode {
	I2C_FREQ_MODE_STANDARD,		/* up to 100 Kb/s */
	I2C_FREQ_MODE_FAST,		/* up to 400 Kb/s */
	I2C_FREQ_MODE_HIGH_SPEED,	/* up to 3.4 Mb/s */
	I2C_FREQ_MODE_FAST_PLUS,	/* up to 1 Mb/s */
};

113 114 115 116 117 118 119 120 121 122
/**
 * struct i2c_vendor_data - per-vendor variations
 * @has_mtdws: variant has the MTDWS bit
 * @fifodepth: variant FIFO depth
 */
struct i2c_vendor_data {
	bool has_mtdws;
	u32 fifodepth;
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
enum i2c_status {
	I2C_NOP,
	I2C_ON_GOING,
	I2C_OK,
	I2C_ABORT
};

/* operation */
enum i2c_operation {
	I2C_NO_OPERATION = 0xff,
	I2C_WRITE = 0x00,
	I2C_READ = 0x01
};

/**
 * struct i2c_nmk_client - client specific data
 * @slave_adr: 7-bit slave address
L
Lucas De Marchi 已提交
140
 * @count: no. bytes to be transferred
141
 * @buffer: client data buffer
L
Lucas De Marchi 已提交
142
 * @xfer_bytes: bytes transferred till now
143 144 145 146 147 148 149 150 151 152 153
 * @operation: current I2C operation
 */
struct i2c_nmk_client {
	unsigned short		slave_adr;
	unsigned long		count;
	unsigned char		*buffer;
	unsigned long		xfer_bytes;
	enum i2c_operation	operation;
};

/**
154
 * struct nmk_i2c_dev - private data structure of the controller.
155
 * @vendor: vendor data for this variant.
156
 * @adev: parent amba device.
157 158 159 160 161
 * @adap: corresponding I2C adapter.
 * @irq: interrupt line for the controller.
 * @virtbase: virtual io memory area.
 * @clk: hardware i2c block clock.
 * @cli: holder of client specific data.
162 163 164 165 166
 * @clk_freq: clock frequency for the operation mode
 * @tft: Tx FIFO Threshold in bytes
 * @rft: Rx FIFO Threshold in bytes
 * @timeout Slave response timeout (ms)
 * @sm: speed mode
167 168 169 170
 * @stop: stop condition.
 * @xfer_complete: acknowledge completion for a I2C message.
 * @result: controller propogated result.
 * @busy: Busy doing transfer.
171 172
 */
struct nmk_i2c_dev {
173
	struct i2c_vendor_data		*vendor;
174
	struct amba_device		*adev;
175 176
	struct i2c_adapter		adap;
	int				irq;
177 178 179
	void __iomem			*virtbase;
	struct clk			*clk;
	struct i2c_nmk_client		cli;
180 181 182 183 184
	u32				clk_freq;
	unsigned char			tft;
	unsigned char			rft;
	int				timeout;
	enum i2c_freq_mode		sm;
185
	int				stop;
186
	struct completion		xfer_complete;
187
	int				result;
J
Jonas Aberg 已提交
188
	bool				busy;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
};

/* controller's abort causes */
static const char *abort_causes[] = {
	"no ack received after address transmission",
	"no ack received during data phase",
	"ack received after xmission of master code",
	"master lost arbitration",
	"slave restarts",
	"slave reset",
	"overflow, maxsize is 2047 bytes",
};

static inline void i2c_set_bit(void __iomem *reg, u32 mask)
{
	writel(readl(reg) | mask, reg);
}

static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
{
	writel(readl(reg) & ~mask, reg);
}

/**
 * flush_i2c_fifo() - This function flushes the I2C FIFO
 * @dev: private data of I2C Driver
 *
 * This function flushes the I2C Tx and Rx FIFOs. It returns
 * 0 on successful flushing of FIFO
 */
static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
{
#define LOOP_ATTEMPTS 10
	int i;
	unsigned long timeout;

	/*
	 * flush the transmit and receive FIFO. The flushing
	 * operation takes several cycles before to be completed.
	 * On the completion, the I2C internal logic clears these
	 * bits, until then no one must access Tx, Rx FIFO and
	 * should poll on these bits waiting for the completion.
	 */
	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);

	for (i = 0; i < LOOP_ATTEMPTS; i++) {
235
		timeout = jiffies + dev->adap.timeout;
236 237 238 239 240 241 242 243

		while (!time_after(jiffies, timeout)) {
			if ((readl(dev->virtbase + I2C_CR) &
				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
					return 0;
		}
	}

244
	dev_err(&dev->adev->dev,
245 246
		"flushing operation timed out giving up after %d attempts",
		LOOP_ATTEMPTS);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	return -ETIMEDOUT;
}

/**
 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
 * @dev: private data of I2C Driver
 */
static void disable_all_interrupts(struct nmk_i2c_dev *dev)
{
	u32 mask = IRQ_MASK(0);
	writel(mask, dev->virtbase + I2C_IMSCR);
}

/**
 * clear_all_interrupts() - Clear all interrupts of I2C Controller
 * @dev: private data of I2C Driver
 */
static void clear_all_interrupts(struct nmk_i2c_dev *dev)
{
	u32 mask;
	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
	writel(mask, dev->virtbase + I2C_ICR);
}

/**
 * init_hw() - initialize the I2C hardware
 * @dev: private data of I2C Driver
 */
static int init_hw(struct nmk_i2c_dev *dev)
{
	int stat;

	stat = flush_i2c_fifo(dev);
	if (stat)
J
Jonas Aberg 已提交
282
		goto exit;
283 284 285 286 287 288 289 290 291 292

	/* disable the controller */
	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);

	disable_all_interrupts(dev);

	clear_all_interrupts(dev);

	dev->cli.operation = I2C_NO_OPERATION;

J
Jonas Aberg 已提交
293 294
exit:
	return stat;
295 296 297
}

/* enable peripheral, master mode operation */
298
#define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
299 300 301 302

/**
 * load_i2c_mcr_reg() - load the MCR register
 * @dev: private data of controller
303
 * @flags: message flags
304
 */
305
static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
306 307
{
	u32 mcr = 0;
308
	unsigned short slave_adr_3msb_bits;
309 310 311

	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	if (unlikely(flags & I2C_M_TEN)) {
		/* 10-bit address transaction */
		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
		/*
		 * Get the top 3 bits.
		 * EA10 represents extended address in MCR. This includes
		 * the extension (MSB bits) of the 7 bit address loaded
		 * in A7
		 */
		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;

		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
	} else {
		/* 7-bit address transaction */
		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
	}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	/* start byte procedure not applied */
	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);

	/* check the operation, master read/write? */
	if (dev->cli.operation == I2C_WRITE)
		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
	else
		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);

	/* stop or repeated start? */
	if (dev->stop)
		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
	else
		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));

	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);

	return mcr;
}

/**
 * setup_i2c_controller() - setup the controller
 * @dev: private data of controller
 */
static void setup_i2c_controller(struct nmk_i2c_dev *dev)
{
	u32 brcr1, brcr2;
	u32 i2c_clk, div;
357 358
	u32 ns;
	u16 slsu;
359 360 361 362 363 364 365

	writel(0x0, dev->virtbase + I2C_CR);
	writel(0x0, dev->virtbase + I2C_HSMCR);
	writel(0x0, dev->virtbase + I2C_TFTR);
	writel(0x0, dev->virtbase + I2C_RFTR);
	writel(0x0, dev->virtbase + I2C_DMAR);

366 367
	i2c_clk = clk_get_rate(dev->clk);

368 369 370 371
	/*
	 * set the slsu:
	 *
	 * slsu defines the data setup time after SCL clock
372 373 374 375 376 377 378
	 * stretching in terms of i2c clk cycles + 1 (zero means
	 * "wait one cycle"), the needed setup time for the three
	 * modes are 250ns, 100ns, 10ns respectively.
	 *
	 * As the time for one cycle T in nanoseconds is
	 * T = (1/f) * 1000000000 =>
	 * slsu = cycles / (1000000000 / f) + 1
379
	 */
380
	ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
381
	switch (dev->sm) {
382 383 384 385 386 387 388 389 390 391 392 393 394
	case I2C_FREQ_MODE_FAST:
	case I2C_FREQ_MODE_FAST_PLUS:
		slsu = DIV_ROUND_UP(100, ns); /* Fast */
		break;
	case I2C_FREQ_MODE_HIGH_SPEED:
		slsu = DIV_ROUND_UP(10, ns); /* High */
		break;
	case I2C_FREQ_MODE_STANDARD:
	default:
		slsu = DIV_ROUND_UP(250, ns); /* Standard */
		break;
	}
	slsu += 1;
395

396 397
	dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
	writel(slsu << 16, dev->virtbase + I2C_SCR);
398 399 400 401 402 403

	/*
	 * The spec says, in case of std. mode the divider is
	 * 2 whereas it is 3 for fast and fastplus mode of
	 * operation. TODO - high speed support.
	 */
404
	div = (dev->clk_freq > 100000) ? 3 : 2;
405 406 407 408 409 410 411 412 413

	/*
	 * generate the mask for baud rate counters. The controller
	 * has two baud rate counters. One is used for High speed
	 * operation, and the other is for std, fast mode, fast mode
	 * plus operation. Currently we do not supprt high speed mode
	 * so set brcr1 to 0.
	 */
	brcr1 = 0 << 16;
414
	brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
415 416 417 418 419 420 421

	/* set the baud rate counter register */
	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);

	/*
	 * set the speed mode. Currently we support
	 * only standard and fast mode of operation
L
Lucas De Marchi 已提交
422
	 * TODO - support for fast mode plus (up to 1Mb/s)
423 424
	 * and high speed (up to 3.4 Mb/s)
	 */
425
	if (dev->sm > I2C_FREQ_MODE_FAST) {
426
		dev_err(&dev->adev->dev,
427
			"do not support this mode defaulting to std. mode\n");
428 429 430 431 432
		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
		writel(I2C_FREQ_MODE_STANDARD << 4,
				dev->virtbase + I2C_CR);
	}
433
	writel(dev->sm << 4, dev->virtbase + I2C_CR);
434 435

	/* set the Tx and Rx FIFO threshold */
436 437
	writel(dev->tft, dev->virtbase + I2C_TFTR);
	writel(dev->rft, dev->virtbase + I2C_RFTR);
438 439 440 441 442
}

/**
 * read_i2c() - Read from I2C client device
 * @dev: private data of I2C Driver
443
 * @flags: message flags
444 445 446 447 448
 *
 * This function reads from i2c client device when controller is in
 * master mode. There is a completion timeout. If there is no transfer
 * before timeout error is returned.
 */
449
static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
450 451
{
	u32 status = 0;
452
	u32 mcr, irq_mask;
453 454
	int timeout;

455
	mcr = load_i2c_mcr_reg(dev, flags);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	writel(mcr, dev->virtbase + I2C_MCR);

	/* load the current CR value */
	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
			dev->virtbase + I2C_CR);

	/* enable the controller */
	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);

	init_completion(&dev->xfer_complete);

	/* enable interrupts by setting the mask */
	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
			I2C_IT_MAL | I2C_IT_BERR);

471
	if (dev->stop || !dev->vendor->has_mtdws)
472 473 474 475 476 477 478 479 480
		irq_mask |= I2C_IT_MTD;
	else
		irq_mask |= I2C_IT_MTDWS;

	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);

	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
			dev->virtbase + I2C_IMSCR);

481
	timeout = wait_for_completion_timeout(
482
		&dev->xfer_complete, dev->adap.timeout);
483 484

	if (timeout == 0) {
485
		/* Controller timed out */
486
		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
487
				dev->cli.slave_adr);
488 489 490 491 492
		status = -ETIMEDOUT;
	}
	return status;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
{
	int count;

	for (count = (no_bytes - 2);
			(count > 0) &&
			(dev->cli.count != 0);
			count--) {
		/* write to the Tx FIFO */
		writeb(*dev->cli.buffer,
			dev->virtbase + I2C_TFR);
		dev->cli.buffer++;
		dev->cli.count--;
		dev->cli.xfer_bytes++;
	}

}

511 512 513
/**
 * write_i2c() - Write data to I2C client.
 * @dev: private data of I2C Driver
514
 * @flags: message flags
515 516 517
 *
 * This function writes data to I2C client
 */
518
static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
519 520
{
	u32 status = 0;
521
	u32 mcr, irq_mask;
522 523
	int timeout;

524
	mcr = load_i2c_mcr_reg(dev, flags);
525 526 527 528 529 530 531 532 533 534 535 536 537

	writel(mcr, dev->virtbase + I2C_MCR);

	/* load the current CR value */
	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
			dev->virtbase + I2C_CR);

	/* enable the controller */
	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);

	init_completion(&dev->xfer_complete);

	/* enable interrupts by settings the masks */
538 539 540 541 542 543 544
	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);

	/* Fill the TX FIFO with transmit data */
	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);

	if (dev->cli.count != 0)
		irq_mask |= I2C_IT_TXFNE;
545 546 547 548 549 550

	/*
	 * check if we want to transfer a single or multiple bytes, if so
	 * set the MTDWS bit (Master Transaction Done Without Stop)
	 * to start repeated start operation
	 */
551
	if (dev->stop || !dev->vendor->has_mtdws)
552 553 554 555 556 557 558 559 560
		irq_mask |= I2C_IT_MTD;
	else
		irq_mask |= I2C_IT_MTDWS;

	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);

	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
			dev->virtbase + I2C_IMSCR);

561
	timeout = wait_for_completion_timeout(
562
		&dev->xfer_complete, dev->adap.timeout);
563 564

	if (timeout == 0) {
565
		/* Controller timed out */
566
		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
567
				dev->cli.slave_adr);
568 569 570 571 572 573
		status = -ETIMEDOUT;
	}

	return status;
}

574 575 576 577 578 579 580 581 582 583 584 585
/**
 * nmk_i2c_xfer_one() - transmit a single I2C message
 * @dev: device with a message encoded into it
 * @flags: message flags
 */
static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
{
	int status;

	if (flags & I2C_M_RD) {
		/* read operation */
		dev->cli.operation = I2C_READ;
586
		status = read_i2c(dev, flags);
587 588 589
	} else {
		/* write operation */
		dev->cli.operation = I2C_WRITE;
590
		status = write_i2c(dev, flags);
591 592 593 594 595 596 597 598 599 600 601 602 603 604
	}

	if (status || (dev->result)) {
		u32 i2c_sr;
		u32 cause;

		i2c_sr = readl(dev->virtbase + I2C_SR);
		/*
		 * Check if the controller I2C operation status
		 * is set to ABORT(11b).
		 */
		if (((i2c_sr >> 2) & 0x3) == 0x3) {
			/* get the abort cause */
			cause =	(i2c_sr >> 4) & 0x7;
605
			dev_err(&dev->adev->dev, "%s\n",
606
				cause >= ARRAY_SIZE(abort_causes) ?
607 608 609 610 611 612 613 614 615 616 617 618
				"unknown reason" :
				abort_causes[cause]);
		}

		(void) init_hw(dev);

		status = status ? status : dev->result;
	}

	return status;
}

619 620
/**
 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
L
Linus Walleij 已提交
621 622 623
 * @i2c_adap: Adapter pointer to the controller
 * @msgs: Pointer to data to be written.
 * @num_msgs: Number of messages to be executed
624 625 626 627 628 629 630
 *
 * This is the function called by the generic kernel i2c_transfer()
 * or i2c_smbus...() API calls. Note that this code is protected by the
 * semaphore set in the kernel i2c_transfer() function.
 *
 * NOTE:
 * READ TRANSFER : We impose a restriction of the first message to be the
631 632 633 634 635 636 637
 *		index message for any read transaction.
 *		- a no index is coded as '0',
 *		- 2byte big endian index is coded as '3'
 *		!!! msg[0].buf holds the actual index.
 *		This is compatible with generic messages of smbus emulator
 *		that send a one byte index.
 *		eg. a I2C transation to read 2 bytes from index 0
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
 *			idx = 0;
 *			msg[0].addr = client->addr;
 *			msg[0].flags = 0x0;
 *			msg[0].len = 1;
 *			msg[0].buf = &idx;
 *
 *			msg[1].addr = client->addr;
 *			msg[1].flags = I2C_M_RD;
 *			msg[1].len = 2;
 *			msg[1].buf = rd_buff
 *			i2c_transfer(adap, msg, 2);
 *
 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
 *		If you want to emulate an SMBUS write transaction put the
 *		index as first byte(or first and second) in the payload.
 *		eg. a I2C transation to write 2 bytes from index 1
 *			wr_buff[0] = 0x1;
 *			wr_buff[1] = 0x23;
 *			wr_buff[2] = 0x46;
 *			msg[0].flags = 0x0;
 *			msg[0].len = 3;
 *			msg[0].buf = wr_buff;
 *			i2c_transfer(adap, msg, 1);
 *
 * To read or write a block of data (multiple bytes) using SMBUS emulation
 * please use the i2c_smbus_read_i2c_block_data()
 * or i2c_smbus_write_i2c_block_data() API
 */
static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
		struct i2c_msg msgs[], int num_msgs)
{
	int status;
	int i;
	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
672
	int j;
673

J
Jonas Aberg 已提交
674 675
	dev->busy = true;

676
	pm_runtime_get_sync(&dev->adev->dev);
J
Jonas Aberg 已提交
677

678 679 680 681 682
	status = clk_prepare_enable(dev->clk);
	if (status) {
		dev_err(&dev->adev->dev, "can't prepare_enable clock\n");
		goto out_clk;
	}
683

684
	/* Optionaly enable pins to be muxed in and configured */
685
	pinctrl_pm_select_default_state(&dev->adev->dev);
686

687 688
	status = init_hw(dev);
	if (status)
689
		goto out;
L
Linus Walleij 已提交
690

691
	/* Attempt three times to send the message queue */
692 693 694
	for (j = 0; j < 3; j++) {
		/* setup the i2c controller */
		setup_i2c_controller(dev);
695

696 697 698 699 700 701 702
		for (i = 0; i < num_msgs; i++) {
			dev->cli.slave_adr	= msgs[i].addr;
			dev->cli.buffer		= msgs[i].buf;
			dev->cli.count		= msgs[i].len;
			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
			dev->result = 0;

703 704
			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
			if (status != 0)
705
				break;
706
		}
707 708
		if (status == 0)
			break;
709
	}
J
Jonas Aberg 已提交
710 711

out:
712 713
	clk_disable_unprepare(dev->clk);
out_clk:
714
	/* Optionally let pins go into idle state */
715
	pinctrl_pm_select_idle_state(&dev->adev->dev);
716

717
	pm_runtime_put_sync(&dev->adev->dev);
J
Jonas Aberg 已提交
718 719

	dev->busy = false;
L
Linus Walleij 已提交
720

721 722 723 724 725 726 727 728 729 730
	/* return the no. messages processed */
	if (status)
		return status;
	else
		return num_msgs;
}

/**
 * disable_interrupts() - disable the interrupts
 * @dev: private data of controller
L
Linus Walleij 已提交
731
 * @irq: interrupt number
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
 */
static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
{
	irq = IRQ_MASK(irq);
	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
			dev->virtbase + I2C_IMSCR);
	return 0;
}

/**
 * i2c_irq_handler() - interrupt routine
 * @irq: interrupt number
 * @arg: data passed to the handler
 *
 * This is the interrupt handler for the i2c driver. Currently
 * it handles the major interrupts like Rx & Tx FIFO management
 * interrupts, master transaction interrupts, arbitration and
 * bus error interrupts. The rest of the interrupts are treated as
 * unhandled.
 */
static irqreturn_t i2c_irq_handler(int irq, void *arg)
{
	struct nmk_i2c_dev *dev = arg;
	u32 tft, rft;
	u32 count;
757
	u32 misr, src;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

	/* load Tx FIFO and Rx FIFO threshold values */
	tft = readl(dev->virtbase + I2C_TFTR);
	rft = readl(dev->virtbase + I2C_RFTR);

	/* read interrupt status register */
	misr = readl(dev->virtbase + I2C_MISR);

	src = __ffs(misr);
	switch ((1 << src)) {

	/* Transmit FIFO nearly empty interrupt */
	case I2C_IT_TXFNE:
	{
		if (dev->cli.operation == I2C_READ) {
			/*
			 * in read operation why do we care for writing?
			 * so disable the Transmit FIFO interrupt
			 */
			disable_interrupts(dev, I2C_IT_TXFNE);
		} else {
779
			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
			/*
			 * if done, close the transfer by disabling the
			 * corresponding TXFNE interrupt
			 */
			if (dev->cli.count == 0)
				disable_interrupts(dev,	I2C_IT_TXFNE);
		}
	}
	break;

	/*
	 * Rx FIFO nearly full interrupt.
	 * This is set when the numer of entries in Rx FIFO is
	 * greater or equal than the threshold value programmed
	 * in RFT
	 */
	case I2C_IT_RXFNF:
		for (count = rft; count > 0; count--) {
			/* Read the Rx FIFO */
			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
			dev->cli.buffer++;
		}
		dev->cli.count -= rft;
		dev->cli.xfer_bytes += rft;
		break;

	/* Rx FIFO full */
	case I2C_IT_RXFF:
		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
			dev->cli.buffer++;
		}
		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
		break;

	/* Master Transaction Done with/without stop */
	case I2C_IT_MTD:
	case I2C_IT_MTDWS:
		if (dev->cli.operation == I2C_READ) {
820 821
			while (!(readl(dev->virtbase + I2C_RISR)
				 & I2C_IT_RXFE)) {
822 823 824 825 826 827 828 829 830 831
				if (dev->cli.count == 0)
					break;
				*dev->cli.buffer =
					readb(dev->virtbase + I2C_RFR);
				dev->cli.buffer++;
				dev->cli.count--;
				dev->cli.xfer_bytes++;
			}
		}

832 833
		disable_all_interrupts(dev);
		clear_all_interrupts(dev);
834 835

		if (dev->cli.count) {
836
			dev->result = -EIO;
837
			dev_err(&dev->adev->dev,
838 839
				"%lu bytes still remain to be xfered\n",
				dev->cli.count);
840 841 842 843 844 845 846 847
			(void) init_hw(dev);
		}
		complete(&dev->xfer_complete);

		break;

	/* Master Arbitration lost interrupt */
	case I2C_IT_MAL:
848
		dev->result = -EIO;
849 850 851 852 853 854 855 856 857 858 859 860 861
		(void) init_hw(dev);

		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
		complete(&dev->xfer_complete);

		break;

	/*
	 * Bus Error interrupt.
	 * This happens when an unexpected start/stop condition occurs
	 * during the transaction.
	 */
	case I2C_IT_BERR:
862
		dev->result = -EIO;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		/* get the status */
		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
			(void) init_hw(dev);

		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
		complete(&dev->xfer_complete);

		break;

	/*
	 * Tx FIFO overrun interrupt.
	 * This is set when a write operation in Tx FIFO is performed and
	 * the Tx FIFO is full.
	 */
	case I2C_IT_TXFOVR:
878
		dev->result = -EIO;
879 880
		(void) init_hw(dev);

881
		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
882 883 884 885 886 887 888 889 890 891 892 893
		complete(&dev->xfer_complete);

		break;

	/* unhandled interrupts by this driver - TODO*/
	case I2C_IT_TXFE:
	case I2C_IT_TXFF:
	case I2C_IT_RXFE:
	case I2C_IT_RFSR:
	case I2C_IT_RFSE:
	case I2C_IT_WTSR:
	case I2C_IT_STD:
894
		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
895 896
		break;
	default:
897
		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
898 899 900 901 902 903
		break;
	}

	return IRQ_HANDLED;
}

J
Jonas Aberg 已提交
904 905

#ifdef CONFIG_PM
R
Rabin Vincent 已提交
906
static int nmk_i2c_suspend(struct device *dev)
J
Jonas Aberg 已提交
907
{
908 909
	struct amba_device *adev = to_amba_device(dev);
	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
J
Jonas Aberg 已提交
910

R
Rabin Vincent 已提交
911
	if (nmk_i2c->busy)
J
Jonas Aberg 已提交
912
		return -EBUSY;
R
Rabin Vincent 已提交
913

914
	pinctrl_pm_select_sleep_state(dev);
915

R
Rabin Vincent 已提交
916 917 918 919 920
	return 0;
}

static int nmk_i2c_resume(struct device *dev)
{
921
	/* First go to the default state */
922
	pinctrl_pm_select_default_state(dev);
923
	/* Then let's idle the pins until the next transfer happens */
924 925
	pinctrl_pm_select_idle_state(dev);

R
Rabin Vincent 已提交
926
	return 0;
J
Jonas Aberg 已提交
927 928 929
}
#else
#define nmk_i2c_suspend	NULL
R
Rabin Vincent 已提交
930
#define nmk_i2c_resume	NULL
J
Jonas Aberg 已提交
931 932
#endif

R
Rabin Vincent 已提交
933 934 935 936 937 938 939 940 941 942
/*
 * We use noirq so that we suspend late and resume before the wakeup interrupt
 * to ensure that we do the !pm_runtime_suspended() check in resume before
 * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
 */
static const struct dev_pm_ops nmk_i2c_pm = {
	.suspend_noirq	= nmk_i2c_suspend,
	.resume_noirq	= nmk_i2c_resume,
};

943 944
static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
{
945
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
946 947 948 949 950 951 952
}

static const struct i2c_algorithm nmk_i2c_algo = {
	.master_xfer	= nmk_i2c_xfer,
	.functionality	= nmk_i2c_functionality
};

953
static void nmk_i2c_of_probe(struct device_node *np,
954
			     struct nmk_i2c_dev *nmk)
955
{
956 957 958
	/* Default to 100 kHz if no frequency is given in the node */
	if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
		nmk->clk_freq = 100000;
959 960

	/* This driver only supports 'standard' and 'fast' modes of operation. */
961 962
	if (nmk->clk_freq <= 100000)
		nmk->sm = I2C_FREQ_MODE_STANDARD;
963
	else
964 965 966 967
		nmk->sm = I2C_FREQ_MODE_FAST;
	nmk->tft = 1; /* Tx FIFO threshold */
	nmk->rft = 8; /* Rx FIFO threshold */
	nmk->timeout = 200; /* Slave response timeout(ms) */
968 969
}

970
static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
971 972
{
	int ret = 0;
973
	struct device_node *np = adev->dev.of_node;
974 975
	struct nmk_i2c_dev	*dev;
	struct i2c_adapter *adap;
976 977
	struct i2c_vendor_data *vendor = id->data;
	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
978

979
	dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
980
	if (!dev) {
981
		dev_err(&adev->dev, "cannot allocate memory\n");
982 983 984
		ret = -ENOMEM;
		goto err_no_mem;
	}
985
	dev->vendor = vendor;
J
Jonas Aberg 已提交
986
	dev->busy = false;
987
	dev->adev = adev;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	nmk_i2c_of_probe(np, dev);

	if (dev->tft > max_fifo_threshold) {
		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
			 dev->tft, max_fifo_threshold);
		dev->tft = max_fifo_threshold;
	}

	if (dev->rft > max_fifo_threshold) {
		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
			dev->rft, max_fifo_threshold);
		dev->rft = max_fifo_threshold;
	}

1002
	amba_set_drvdata(adev, dev);
1003

1004 1005 1006 1007
	/* Select default pin state */
	pinctrl_pm_select_default_state(&adev->dev);
	/* If possible, let's go to idle until the first transfer */
	pinctrl_pm_select_idle_state(&adev->dev);
1008

1009 1010 1011
	dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
				resource_size(&adev->res));
	if (IS_ERR(dev->virtbase)) {
1012
		ret = -ENOMEM;
1013
		goto err_no_mem;
1014 1015
	}

1016
	dev->irq = adev->irq[0];
1017
	ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1018 1019
				DRIVER_NAME, dev);
	if (ret) {
1020
		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1021
		goto err_no_mem;
1022 1023
	}

1024
	pm_suspend_ignore_children(&adev->dev, true);
R
Rabin Vincent 已提交
1025

1026
	dev->clk = devm_clk_get(&adev->dev, NULL);
1027
	if (IS_ERR(dev->clk)) {
1028
		dev_err(&adev->dev, "could not get i2c clock\n");
1029
		ret = PTR_ERR(dev->clk);
1030
		goto err_no_mem;
1031 1032 1033
	}

	adap = &dev->adap;
1034
	adap->dev.of_node = np;
1035
	adap->dev.parent = &adev->dev;
1036 1037 1038
	adap->owner	= THIS_MODULE;
	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
	adap->algo	= &nmk_i2c_algo;
1039
	adap->timeout	= msecs_to_jiffies(dev->timeout);
1040
	snprintf(adap->name, sizeof(adap->name),
1041
		 "Nomadik I2C at %pR", &adev->res);
1042 1043 1044

	i2c_set_adapdata(adap, dev);

1045
	dev_info(&adev->dev,
1046 1047
		 "initialize %s on virtual base %p\n",
		 adap->name, dev->virtbase);
1048

1049
	ret = i2c_add_adapter(adap);
1050
	if (ret) {
1051
		dev_err(&adev->dev, "failed to add adapter\n");
1052
		goto err_no_mem;
1053 1054
	}

1055 1056
	pm_runtime_put(&adev->dev);

1057 1058 1059 1060 1061 1062 1063
	return 0;

 err_no_mem:

	return ret;
}

1064
static int nmk_i2c_remove(struct amba_device *adev)
1065
{
1066 1067
	struct resource *res = &adev->res;
	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1068 1069 1070 1071 1072 1073 1074

	i2c_del_adapter(&dev->adap);
	flush_i2c_fifo(dev);
	disable_all_interrupts(dev);
	clear_all_interrupts(dev);
	/* disable the controller */
	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1075 1076
	if (res)
		release_mem_region(res->start, resource_size(res));
1077 1078 1079 1080

	return 0;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static struct i2c_vendor_data vendor_stn8815 = {
	.has_mtdws = false,
	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
};

static struct i2c_vendor_data vendor_db8500 = {
	.has_mtdws = true,
	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
};

1091 1092 1093 1094
static struct amba_id nmk_i2c_ids[] = {
	{
		.id	= 0x00180024,
		.mask	= 0x00ffffff,
1095
		.data	= &vendor_stn8815,
1096 1097 1098 1099
	},
	{
		.id	= 0x00380024,
		.mask	= 0x00ffffff,
1100
		.data	= &vendor_db8500,
1101 1102 1103 1104 1105 1106 1107 1108
	},
	{},
};

MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);

static struct amba_driver nmk_i2c_driver = {
	.drv = {
1109 1110
		.owner = THIS_MODULE,
		.name = DRIVER_NAME,
R
Rabin Vincent 已提交
1111
		.pm = &nmk_i2c_pm,
1112
	},
1113
	.id_table = nmk_i2c_ids,
1114
	.probe = nmk_i2c_probe,
1115
	.remove = nmk_i2c_remove,
1116 1117 1118 1119
};

static int __init nmk_i2c_init(void)
{
1120
	return amba_driver_register(&nmk_i2c_driver);
1121 1122 1123 1124
}

static void __exit nmk_i2c_exit(void)
{
1125
	amba_driver_unregister(&nmk_i2c_driver);
1126 1127 1128 1129 1130 1131 1132 1133
}

subsys_initcall(nmk_i2c_init);
module_exit(nmk_i2c_exit);

MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
MODULE_LICENSE("GPL");