tensor.py 45.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
69
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
70 71 72 73 74
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
82 83 84
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
85
        default_initializer (Initializer, optional): Initializer for the parameter
86 87

    Returns:
88
        The created parameter.
Y
yuyang18 已提交
89 90

    Examples:
91 92
        .. code-block:: python

93
            import paddle.fluid as fluid
94 95
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
111
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
112

113 114 115
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
116
                      variable will be filled with it.
117 118
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
119
                           Default: False
120
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
121
                         Default: False
122 123
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
124 125

    Returns:
126
        Variable: The created Variable
F
fengjiayi 已提交
127 128 129 130

    Examples:
        .. code-block:: python

131
            import paddle.fluid as fluid
132 133 134
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
138 139 140 141 142
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
143 144 145
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
146

Q
Qiao Longfei 已提交
147 148 149
    return var


150
def cast(x, dtype):
Y
Yu Yang 已提交
151
    """
152 153 154
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
155 156

    Args:
157 158 159 160
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
161 162

    Returns:
163
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
164 165 166

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
167

168
            import paddle.fluid as fluid
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
191 192
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
193
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


203
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
204
    """
205 206
    **Concat**

207
    This OP concatenates the input along the axis.
208 209

    Args:
210 211 212 213 214 215 216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
218 219

    Returns:
220
        Variable: A Tensor with the same data type as input's.
221 222 223

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
224

225
            import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
248 249
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
259 260
def tensor_array_to_tensor(input, axis=1, name=None):
    """
261
    This OP concatenates the input LodTensorArray along the axis.
L
li099 已提交
262 263

    Args:
264 265 266 267 268 269 270 271
        input(Variable): A LodTensorArray with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 1.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
L
li099 已提交
272 273

    Returns:
274 275
        Variable: A LoDTensor with the same data type as input's
        Variable: The input LodTensorArray items' dims along the axis.
L
li099 已提交
276 277 278 279

    Examples:
        .. code-block:: python

280
            import paddle.fluid as fluid
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            import numpy as np

            place = fluid.CPUPlace()

            x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
            tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
            x_arr = fluid.layers.create_array(dtype="float32")
            c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
            c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            fluid.layers.array_write(x=x1, i=c1, array=x_arr)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            feedx = fluid.LoDTensor()
            feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
            print(np.array(res[0]))
            # [[ 1.   1.   1.   1.3 -2.4]
            #  [ 1.   1.   1.   0.   4. ]]
L
li099 已提交
303
    """
L
li099 已提交
304
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
305 306 307
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
308
        type='tensor_array_to_tensor',
L
li099 已提交
309 310 311 312 313 314 315
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


316
def sums(input, out=None):
F
fengjiayi 已提交
317 318
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
319 320 321 322 323
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
324
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
325
                             Default: None
K
kavyasrinet 已提交
326 327

    Returns:
F
fengjiayi 已提交
328
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
329 330

    Examples:
F
fengjiayi 已提交
331
        .. code-block:: python
K
kavyasrinet 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
350 351 352
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
353 354
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
355 356 357 358 359
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
360 361 362
    return out


F
fengjiayi 已提交
363
def assign(input, output=None):
364
    """
365
    The OP copies the :attr:`input` to the :attr:`output`.
366

367 368 369 370 371
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
372 373

    Returns:
374
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
375 376 377

    Examples:
        .. code-block:: python
378

379
          import paddle.fluid as fluid
380 381 382 383 384 385
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
386
    """
Y
Yu Yang 已提交
387
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
388
    if output is None:
X
Xin Pan 已提交
389
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
390 391
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
392
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
393 394
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
395
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
396
            value_name = "fp32_values"
397
            values = [float(v) for v in input.flat]
398
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
399
            value_name = "int32_values"
400
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
401 402
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
403 404 405
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
406 407 408 409 410 411 412

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
413
                value_name: values
X
xuwei06 已提交
414 415 416 417
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
418 419 420
    return output


Q
QI JUN 已提交
421
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
422
    """
W
wangchaochaohu 已提交
423
    This OP creates a Tensor with specified `shape` and `dtype`, and
424
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
425

W
wangchaochaohu 已提交
426
    The attribute `stop_gradient` of the created Tensor is setted to True.
427 428

    Args:
W
wangchaochaohu 已提交
429 430 431 432 433 434 435 436
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
437 438

    Returns:
W
wangchaochaohu 已提交
439 440 441 442 443
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
444 445 446 447

    Examples:
        .. code-block:: python

448
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
449 450 451
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
452
    """
453

Y
Yu Yang 已提交
454
    helper = LayerHelper("fill_constant", **locals())
455 456 457 458 459 460 461
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
462
    if out is None:
X
Xin Pan 已提交
463
        out = helper.create_variable_for_type_inference(dtype=dtype)
464 465 466 467 468 469
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
470 471 472 473
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
474 475 476 477
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
478
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
479 480
        },
        stop_gradient=True)
Y
Yu Yang 已提交
481 482 483 484
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
485
@templatedoc()
Y
Yu Yang 已提交
486 487 488 489 490
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
491
                                  output_dim_idx=0):
492
    """
W
wangchaochaohu 已提交
493 494 495 496 497
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
498 499

    Args:
W
wangchaochaohu 已提交
500 501 502 503 504 505 506 507 508 509 510
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
511 512

    Returns:
W
wangchaochaohu 已提交
513
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
514 515 516 517 518

    Examples:

        .. code-block:: python

519
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
520
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
521
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
522
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
523

524
    """
Y
Yu Yang 已提交
525
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
526
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
542 543 544 545
def argmin(x, axis=0):
    """
    **argmin**

546 547
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
548 549

    Args:
550 551 552 553 554
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
555

S
sneaxiy 已提交
556
    Returns:
557
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
558

S
sneaxiy 已提交
559 560
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
561

562
            import paddle.fluid as fluid
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
590 591
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
592
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
593 594 595 596 597 598 599 600 601 602 603 604
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

605 606
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
607 608

    Args:
609 610 611 612 613
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
614

S
sneaxiy 已提交
615
    Returns:
616
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
617

S
sneaxiy 已提交
618 619
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
620

621
            import paddle.fluid as fluid
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
649 650
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
651
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
652 653 654 655 656 657 658 659
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


660
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
661
    """
662 663 664
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
665 666

    Args:
667 668 669 670 671 672 673 674
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
675 676

    Returns:
677 678 679
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
680 681 682 683

    Examples:
        .. code-block:: python

684
            import paddle.fluid as fluid
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
726 727
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
728 729 730 731
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
732 733 734 735
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
736 737
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
738 739 740
    return out, ids


Y
Yang Yu 已提交
741
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
742
    """
743 744
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
745

746 747 748 749 750 751 752
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
753 754

    Returns:
755
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
756 757 758 759

    Examples:
        .. code-block:: python

760
          import paddle.fluid as fluid
761
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
762
    """
C
chengduozh 已提交
763 764 765 766
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
767 768 769
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
770
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
771
    """
772 773
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
774

775 776 777 778 779 780 781
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
782 783

    Returns:
784
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
785 786 787 788

    Examples:
        .. code-block:: python

789
          import paddle.fluid as fluid
790
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
791 792
    """
    return fill_constant(value=0.0, **locals())
793 794


F
fengjiayi 已提交
795 796
def reverse(x, axis):
    """
797
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
798

799 800 801 802 803
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
804 805

    Returns:
806
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
807 808 809 810

    Examples:
        .. code-block:: python

811
          import paddle.fluid as fluid
812 813 814 815
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
816 817 818 819
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
820
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
821 822
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
823
        inputs={'X': x},
F
fengjiayi 已提交
824 825 826 827 828
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


829 830 831 832 833 834 835
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
836 837 838
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
854 855
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
856
        file_path(str): The file path where variables will be saved.
857
        overwrite(bool): Whether or not cover the given file when it has already
858 859
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
860 861 862 863 864 865 866 867

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

868
            import paddle.fluid as fluid
869 870 871 872 873 874 875
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
900 901 902 903 904 905 906


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
907
       x (Variable): The Tensor/LoDTensor to be checked.
908 909

    Returns:
910
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
911 912 913 914 915 916 917 918
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

919 920
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
921
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
922 923 924 925 926 927 928 929 930
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
931
       x (Variable): The Tensor/LoDTensor to be checked.
932 933

    Returns:
934
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
935 936 937 938 939 940 941 942
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

943 944
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
945
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
946 947 948 949 950 951
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
952
    Test if any of x contains an infinity / nan number. If all the elements are finite,
953 954
    returns true, else false.

955 956 957
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

958
    Args:
959
       x(Variable): The Tensor / LoDTensor to be checked.
960 961 962

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
963 964 965 966 967

    Examples:

        .. code-block:: python

968
            import paddle.fluid as fluid
969 970 971 972 973 974 975 976 977 978 979 980 981
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
982 983
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
984
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
985 986
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
987 988 989 990 991 992 993 994 995


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
996 997 998 999
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1000
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1001 1002 1003
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1004
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1005
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1006

L
Liufang Sang 已提交
1007 1008 1009
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1010 1011 1012 1013 1014

    examples:

        .. code-block:: python

1015
             import paddle.fluid as fluid
W
whs 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1036
    out.stop_gradient = True
W
whs 已提交
1037
    return out
Z
zhoukunsheng 已提交
1038 1039


Z
zhoukunsheng 已提交
1040 1041
def linspace(start, stop, num, dtype):
    """
1042
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1043 1044

    Args:
1045 1046 1047 1048 1049 1050 1051
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1052 1053

    Returns:
1054 1055 1056
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1057

Z
zhoukunsheng 已提交
1058
    Examples:
Z
zhoukunsheng 已提交
1059 1060
        .. code-block:: python

1061
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1062 1063
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1084 1085


Z
zhoukunsheng 已提交
1086 1087
def zeros_like(x, out=None):
    """
1088
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1089 1090 1091
    with `x`.

    Args:
1092 1093 1094 1095
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1096 1097

    Returns:
1098 1099
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1100 1101 1102 1103

    Examples:
        .. code-block:: python

1104
          import paddle.fluid as fluid
1105
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1106 1107
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1117 1118 1119 1120


def diag(diagonal):
    """
1121
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1122 1123

    Args:
1124 1125
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1126 1127

    Returns:
1128 1129
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1130 1131 1132 1133 1134 1135 1136

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1137 1138 1139

          import paddle.fluid as fluid
          import numpy as np
1140 1141 1142
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1158 1159


1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1172 1173
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1174 1175

    Returns:
1176
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1177 1178 1179 1180 1181

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1182 1183
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1184
          #  [0, 1, 0]
1185 1186
          #  [0, 0, 1]]

1187
          data = fluid.layers.eye(2, 3, dtype='int32')
1188
          # [[1, 0, 0]
1189
          #  [0, 1, 0]]
1190 1191

          data = fluid.layers.eye(2, batch_shape=[3])
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1244
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out