optimizer.py 260.5 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
S
sandyhouse 已提交
22
import time
23

24
import paddle
Q
Qiao Longfei 已提交
25
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
26
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
27

28 29
from . import framework
from . import layers
30
from . import unique_name
31
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
32
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
33 34 35
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
36
from .layers import ops
37
from .regularizer import append_regularization_ops
38
from .dygraph import base as imperative_base
39
from .dygraph import no_grad
40
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
41 42 43
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
44
from functools import cmp_to_key
45
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
46
from .. import compat as cpt
47

48
__all__ = [
49 50 51 52
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
53
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
54 55
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
56
]
Q
Qiao Longfei 已提交
57 58 59 60 61 62


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
63 64
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
65 66
    """

67
    @imperative_base.no_grad
68 69 70 71
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
72
                 grad_clip=None,
73
                 name=None):
74
        # Because of the loop import, so place it in the function body
75
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
76 77
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
78
        self._name = name
L
lujun 已提交
79
        if framework.in_dygraph_mode():
80
            if not isinstance(learning_rate,
81
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
82
                raise TypeError(
83
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
84
                    % type(learning_rate))
85
            if self._parameter_list is None:
86 87 88
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
89 90 91 92 93 94 95 96
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
97
        else:
98
            if not isinstance(learning_rate,
99
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
100
                raise TypeError(
101
                    "learning rate should be float or LRScheduler, got %s here"
102
                    % type(learning_rate))
M
minqiyang 已提交
103

104 105 106 107 108
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
109
        self.regularization = regularization
110
        self._grad_clip = grad_clip
111
        self._learning_rate = learning_rate
L
Leo Chen 已提交
112

D
dzhwinter 已提交
113
        self._dtype = None
L
Leo Chen 已提交
114 115 116 117
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

118
        # each program should have a independent learning rate
119
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
120
        self._learning_rate_map = dict()
121
        if isinstance(self._learning_rate, framework.Variable):
122 123
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
124 125 126 127 128
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
129
        self.helper = None
130
        self._opti_name_list = []
H
hong 已提交
131
        self._accumulators_holder = {}
132
        self._param_device_map = dict()
H
hong 已提交
133 134 135 136

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
137 138
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
139 140 141

        Args: None
        Return:
T
tianshuo78520a 已提交
142
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
143 144 145 146 147
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
148 149 150 151 152 153

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
154 155

        '''
156
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
157 158 159 160 161
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
162
        if isinstance(self._learning_rate, LRScheduler):
163 164
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
165
        if isinstance(self._learning_rate, LearningRateDecay):
166 167 168 169
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
170 171 172
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

173 174
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
175

176
                state_dict['global_step'] = var_temp
H
hong 已提交
177 178 179
        return state_dict

    @framework.dygraph_only
180
    def set_state_dict(self, state_dict):
H
hong 已提交
181
        '''
T
tianshuo78520a 已提交
182
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
183 184 185 186 187 188 189 190

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
191

192 193
                import paddle
                import paddle.fluid as fluid
194 195 196

                paddle.disable_static()

197
                emb = paddle.nn.Embedding(10, 10)
198

199
                state_dict = emb.state_dict()
200
                fluid.save_dygraph(state_dict, "paddle_dy")
201

202
                scheduler = paddle.optimizer.lr.NoamDecay(	
203 204 205 206
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
207
                state_dict = adam.state_dict()
208
                fluid.save_dygraph(state_dict, "paddle_dy")
209

210
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
211
        '''
212 213
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
214
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
215 216

        if isinstance(self._learning_rate, LearningRateDecay):
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
239 240 241 242 243 244

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
245
                var = var_tmp.value()
H
hong 已提交
246 247 248 249 250 251 252 253
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
254
                    load_para_np = load_para.numpy()
H
hong 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
270

271 272 273
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

274 275
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
276

Q
Qiao Longfei 已提交
277
    def _create_global_learning_rate(self):
278 279
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

302 303 304
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
305 306 307 308 309 310 311 312 313 314 315 316
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
317
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
318
            elif isinstance(self._learning_rate, LearningRateDecay):
319 320 321
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
322
                raise TypeError(
323 324
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
325
        else:
326 327 328 329
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
330 331 332 333 334 335
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
336

337 338 339 340 341 342 343 344
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

423 424 425
    @framework.dygraph_only
    def current_step_lr(self):
        """
426
        :api_attr: imperative
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
472
        if isinstance(current_lr, framework.Variable):
473 474 475 476
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
477 478 479
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
480 481 482 483 484 485 486
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
487
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
488 489 490 491
        """
        get global decayed learning rate
        :return:
        """
492 493
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
494
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
495

Q
Qiao Longfei 已提交
496 497 498 499 500
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

501 502 503 504
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
505 506
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
507
        else:
W
Wu Yi 已提交
508
            if param_lr == 1.0:
Y
yuyang18 已提交
509
                return self._global_learning_rate()
W
Wu Yi 已提交
510
            else:
X
Xin Pan 已提交
511 512 513
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
514
                    return self._global_learning_rate() * param_lr
515 516 517 518 519 520 521

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
522
        """
523 524
        pass

525
    def _finish_update(self, block, parameters_and_grads):
526 527 528 529 530 531 532 533
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
534
            None
535 536 537
        """
        pass

538 539 540 541 542
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
543
                         shape=None,
544
                         type=None,
545
                         device=None):
546 547 548 549 550 551 552 553 554
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
555 556
        if self._name is not None:
            name = self._name + "_" + name
557 558
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
559
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
560
                return self._accumulators[name][param.name]
561
            raise Exception("Accumulator {} already exists for parameter {}".
562
                            format(name, param.name))
563 564
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
565
        assert isinstance(self.helper, LayerHelper)
566 567 568 569 570

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
571
        var = self.helper.create_global_variable(
572
            name=var_name,
Q
Qiao Longfei 已提交
573
            persistable=True,
F
fengjiayi 已提交
574
            dtype=dtype or param.dtype,
575
            type=param.type if type is None else type,
H
hong 已提交
576 577
            shape=shape,
            belong_to_optimizer=True)
578 579 580 581 582
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
583 584 585 586 587 588 589

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
590
        self._accumulators[name][param.name] = var
591
        return var
592 593 594 595 596 597 598 599 600 601 602

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
603 604
        if self._name is not None:
            name = self._name + "_" + name
605 606 607 608 609 610
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

611 612 613 614 615 616 617 618 619 620 621 622
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
623
                        break
624 625 626 627 628 629 630

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

631
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
632 633 634
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
635
          parameters_and_grads(list(tuple(Variable, Variable))):
636
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
637 638

        Returns:
639
          return_op_list: a list of operators that will complete one step of
640 641 642
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
643
        """
644 645 646 647 648
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
649
        # for parameters and extend _finish_update method to add custom ops.
650

651
        # Allways called under program_guard use global block as loss block
652 653 654
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

655
        global_block = framework.default_main_program().global_block()
656 657 658 659 660 661 662 663 664
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
665
        self.helper = LayerHelper(self.__class__.__name__)
666
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
667
        self._create_accumulators(
668
            target_block,
C
chengduo 已提交
669
            [p[0] for p in parameters_and_grads if p[0].trainable])
670 671
        self._create_global_learning_rate()

M
minqiyang 已提交
672
        if framework.in_dygraph_mode():
673 674 675
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
676 677
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
678 679 680 681 682 683 684
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
685 686 687 688 689
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
690 691 692

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
693
        self._finish_update(target_block, parameters_and_grads)
694

695 696
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
697 698

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
699 700 701 702 703 704 705 706 707
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
708 709
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
725 726 727 728 729 730 731 732 733 734 735 736 737
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
738 739
        return new_param_grads, (table_param, table_grad), sgd_op

740 741 742 743 744 745 746
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
747
        The first part of ``minimize``, do auto-diff to append backward operations for
748 749 750
        the current program.

        Args:
751 752 753 754
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
755
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
756 757
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
758
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
759 760 761
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
762

763
        Return:
764 765
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
766

767
        Examples:
768
            See examples in ``apply_gradients``.
769
        """
770
        act_no_grad_set = None
L
Leo Chen 已提交
771
        if framework.in_dygraph_mode():
772
            pass
L
Leo Chen 已提交
773 774
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
775

L
Leo Chen 已提交
776 777 778 779
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

L
lujun 已提交
780
        if framework.in_dygraph_mode():
781 782 783
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
784
            params_grads = []
785
            for param in parameter_list:
C
chengduo 已提交
786 787
                if not param.trainable:
                    continue
788
                if param._grad_ivar() is not None:
C
chengduo 已提交
789
                    # create gradient variable
790
                    grad_var = param._grad_ivar()
C
chengduo 已提交
791
                    params_grads.append((param, grad_var))
792
        else:
C
chengduo 已提交
793 794 795 796 797
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
798 799 800 801
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
802 803
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
804 805
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
806
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
807
        return params_grads
808 809 810 811 812 813 814 815

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
816

817 818
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
819

820 821 822
        Examples:
            .. code-block:: python

823
                import paddle.fluid as fluid
824 825 826 827 828 829 830
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
831

832 833
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

834
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
835 836 837 838
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
839 840

        # Add regularization if any
841 842
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
843 844 845 846

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
847 848 849 850 851 852 853 854 855 856 857 858
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
859
        if framework.in_dygraph_mode():
C
chengduo 已提交
860 861
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
862 863
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
864 865
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
866 867 868 869 870 871 872
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
873
    def _get_no_grad_set(self, loss, no_grad_set=None):
874
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
875 876 877 878 879 880 881 882
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

883 884 885 886
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
887 888

        If not, new gradient will accumulat on previous gradient.
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

916
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
917 918
    def minimize(self,
                 loss,
919
                 startup_program=None,
Q
Qiao Longfei 已提交
920
                 parameter_list=None,
921
                 no_grad_set=None):
922
        """
923
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
924

925
        Args:
926 927 928 929
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
930
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
931 932
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
933
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
934
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
935

936
        Returns:
937 938 939
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
940 941 942
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
943 944 945

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
946
        """
C
chengduo 已提交
947
        assert isinstance(loss, Variable), "The loss should be an Variable."
948

949 950
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
951

C
chengduo 已提交
952 953 954 955 956
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
957

C
chengduo 已提交
958 959
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
960

Q
Qiao Longfei 已提交
961
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
962 963 964


class SGDOptimizer(Optimizer):
965
    r"""
Q
qiaolongfei 已提交
966 967 968 969 970 971
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

972 973 974
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
975
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
976 977
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
978 979 980 981 982
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
983 984 985 986
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
987 988
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
989 990 991 992

    Examples:
        .. code-block:: python

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1018 1019
    """

1020 1021 1022 1023
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1024
                 grad_clip=None,
1025
                 name=None):
Q
Qiao Longfei 已提交
1026
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1027
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1028
            learning_rate=learning_rate,
1029
            parameter_list=parameter_list,
X
Xin Pan 已提交
1030
            regularization=regularization,
1031
            grad_clip=grad_clip,
X
Xin Pan 已提交
1032
            name=name)
Q
Qiao Longfei 已提交
1033 1034
        self.type = "sgd"

1035
    @no_grad
1036
    def _append_optimize_op(self, block, param_and_grad):
1037
        lr = self._create_param_lr(param_and_grad)
1038
        if framework.in_dygraph_mode():
1039 1040 1041
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1042

1043
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1044 1045 1046 1047 1048 1049
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1050
                "LearningRate": lr
Q
Qiao Longfei 已提交
1051
            },
M
minqiyang 已提交
1052 1053
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1054 1055

        return sgd_op
1056 1057 1058


class MomentumOptimizer(Optimizer):
1059
    r"""
Q
qiaolongfei 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1073
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1074 1075 1076

        & else:

Q
qiaolongfei 已提交
1077
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1078

1079 1080 1081 1082
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1083
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1084 1085
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1086
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1087 1088 1089 1090 1091
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1092 1093 1094 1095
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1096 1097
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1098 1099 1100 1101

    Examples:
        .. code-block:: python

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1127 1128 1129
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1130 1131 1132
    def __init__(self,
                 learning_rate,
                 momentum,
1133
                 parameter_list=None,
X
Xin Pan 已提交
1134 1135
                 use_nesterov=False,
                 regularization=None,
1136
                 grad_clip=None,
X
Xin Pan 已提交
1137
                 name=None):
1138 1139
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1140
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1141
            learning_rate=learning_rate,
1142
            parameter_list=parameter_list,
X
Xin Pan 已提交
1143
            regularization=regularization,
1144
            grad_clip=grad_clip,
X
Xin Pan 已提交
1145
            name=name)
1146 1147
        self.type = "momentum"
        self._momentum = momentum
1148
        self._use_nesterov = bool(use_nesterov)
1149 1150 1151 1152 1153

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1154
            self._add_accumulator(self._velocity_acc_str, p)
1155 1156 1157 1158 1159 1160

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1161 1162 1163 1164 1165 1166 1167 1168
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1169

1170
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1171 1172 1173 1174
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1175
            "LearningRate": [lr]
1176 1177 1178 1179 1180 1181
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1182 1183 1184
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1185 1186 1187
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1188
            stop_gradient=True)
1189 1190

        return momentum_op
1191 1192


1193
class DGCMomentumOptimizer(Optimizer):
1194
    r"""
1195
	:api_attr: Static Graph
S
swtkiwi 已提交
1196

1197
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1198

G
gongweibao 已提交
1199
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1200 1201
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1202
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1203 1204 1205

    Eventually, these gradients become large enough to be transmitted.

1206
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1207

G
gongweibao 已提交
1208
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1209 1210 1211 1212

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1213

1214 1215
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1216

1217
        2. Call momentum to optimize the cost.
1218 1219

    Args:
1220 1221
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1222
        momentum (float): Momentum factor.
G
gongweibao 已提交
1223
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1224 1225 1226 1227 1228 1229 1230
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1231
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1232 1233
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1234
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1235 1236 1237 1238 1239
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1240 1241 1242
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1243 1244
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1245 1246 1247 1248

    Examples:
        .. code-block:: python

1249
            import paddle.fluid as fluid
1250
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1251 1252 1253 1254 1255
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1256 1257

    """
1258 1259
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1260 1261 1262 1263 1264 1265 1266

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1267
                 parameter_list=None,
1268 1269 1270
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1271
                 grad_clip=None,
1272
                 name=None):
Z
zhongpu 已提交
1273 1274
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1275 1276 1277 1278

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1279 1280 1281 1282
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1283
            parameter_list=parameter_list,
1284
            regularization=regularization,
1285
            grad_clip=grad_clip,
1286 1287 1288 1289
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1290

1291
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1292
        self._rampup_begin_step = rampup_begin_step
1293 1294
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1295

1296
        self._rampup_begin_step_var = None
1297
        self._global_step_var = None
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1310 1311

            self._num_trainers = num_trainers
1312
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1313

1314 1315
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1316

1317 1318 1319
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1320

1321 1322
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1323
            from .regularizer import L1Decay, L2Decay
1324 1325 1326 1327
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1328 1329
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1330
        return regular_type, regular_coeff
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1358 1359

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1360 1361 1362
            type = "momentum"
        else:
            type = "dgc_momentum"
1363 1364 1365 1366 1367
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1368
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1369 1370 1371

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1372 1373 1374 1375
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1376 1377 1378
            stop_gradient=True)
        return dgc_momentum_op

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1411 1412 1413 1414 1415 1416
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1417
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1418

1419 1420 1421
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1422 1423 1424 1425 1426
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1427
            name=core.dgc.kDGCRampUpBeginStepName(),
1428 1429 1430
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1431 1432
        self.helper = LayerHelper(self.__class__.__name__)

1433
        for param_var, grad_var in param_and_grads:
1434 1435 1436
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1437
            if not self._is_use_dgc(param_var, grad_var):
1438 1439
                continue

1440
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1441 1442 1443 1444 1445

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1446
                name=param_var.name + core.dgc.kDGCKName(),
1447 1448 1449 1450 1451 1452 1453
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1454
                name=param_var.name + core.dgc.kDGCEncodedName(),
1455 1456 1457
                value=0.0,
                force_cpu=False)

1458 1459 1460 1461 1462 1463 1464 1465
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1485 1486
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1487
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1488
                         encoded_var, gather_var)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1504 1505
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1506 1507 1508 1509 1510

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1511
            type="dgc_clip_by_norm",
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1524
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1525 1526

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1527
                encoded_var, gather_var):
1528 1529
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1530

1531 1532 1533 1534 1535 1536 1537
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1538 1539 1540 1541 1542 1543
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1544
                "Param": param_var,
1545 1546
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1547 1548 1549 1550 1551 1552
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1553 1554
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1555 1556 1557 1558 1559 1560
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1561
                "rampup_step": float(self._rampup_step),
1562 1563
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1564 1565 1566 1567 1568 1569 1570 1571
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1572
    @imperative_base.no_grad
1573
    def apply_gradients(self, params_grads):
1574 1575 1576 1577 1578
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1579 1580 1581 1582 1583 1584
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1585
        # DGC clip and regularization in optimizer.backward
1586 1587 1588 1589 1590 1591
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1592
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1593 1594 1595 1596 1597
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1612

1613
class LarsMomentumOptimizer(Optimizer):
1614
    r"""
1615 1616 1617 1618 1619 1620 1621 1622 1623
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1624
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1625 1626 1627

        & param = param - velocity

1628 1629 1630 1631 1632 1633
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1634
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1635 1636
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1637 1638 1639 1640 1641
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1642 1643 1644 1645
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1646 1647
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1648 1649 1650
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
        
1651 1652 1653
    Examples:
        .. code-block:: python

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1670 1671 1672 1673 1674 1675 1676 1677
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1678
                 parameter_list=None,
1679
                 regularization=None,
1680
                 grad_clip=None,
1681 1682 1683
                 name=None,
                 exclude_from_weight_decay=None,
                 epsilon=0):
1684 1685 1686 1687
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1688
            parameter_list=parameter_list,
1689
            regularization=regularization,
1690
            grad_clip=grad_clip,
1691 1692 1693 1694 1695
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1696 1697 1698 1699 1700
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1711 1712 1713 1714 1715 1716 1717 1718
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
1737 1738
                "lars_weight_decay": _lars_weight_decay,
                "epsilon": self._epsilon
M
minqiyang 已提交
1739 1740
            },
            stop_gradient=True)
1741 1742 1743 1744

        return momentum_op


1745
class AdagradOptimizer(Optimizer):
1746
    r"""
1747 1748
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1749

1750
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1751 1752 1753 1754 1755 1756 1757

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1758 1759 1760 1761 1762 1763
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1764 1765 1766
    for numerical stability to avoid the division by zero error.

    Args:
1767 1768 1769 1770
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1771
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1772 1773
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1774 1775 1776 1777 1778
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1779 1780 1781 1782
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1783 1784 1785 1786 1787
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1788 1789 1790 1791

    Examples:
        .. code-block:: python

1792
            import numpy as np
1793
            import paddle.fluid as fluid
1794 1795

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1796
            inp = fluid.data(name="inp", shape=[2, 2])
1797 1798
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1799
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1800 1801 1802 1803 1804 1805 1806
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1807 1808 1809
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1810 1811 1812
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1813
                 parameter_list=None,
X
Xin Pan 已提交
1814
                 regularization=None,
1815
                 grad_clip=None,
1816
                 name=None,
X
xuezhong 已提交
1817
                 initial_accumulator_value=0.0):
1818 1819
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1820
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1821
            learning_rate=learning_rate,
1822
            parameter_list=parameter_list,
X
Xin Pan 已提交
1823
            regularization=regularization,
1824
            grad_clip=grad_clip,
X
Xin Pan 已提交
1825
            name=name)
1826 1827
        self.type = "adagrad"
        self._epsilon = epsilon
1828
        self.initial_accumulator_value = initial_accumulator_value
1829 1830 1831 1832 1833

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1834 1835 1836 1837
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1838 1839 1840 1841 1842 1843

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1844
        # Create the adagrad optimizer op
1845 1846 1847 1848 1849 1850
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1851
                "LearningRate": self._create_param_lr(param_and_grad)
1852 1853 1854
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1855 1856
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1857 1858

        return adagrad_op
1859 1860 1861


class AdamOptimizer(Optimizer):
1862
    r"""
T
tianshuo78520a 已提交
1863
    The Adam optimizer uses an optimization described at the end
1864 1865 1866 1867 1868
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1883 1884
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1885
    Args:
1886 1887
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1888 1889
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1890
            The default value is 0.9.
1891 1892
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1893 1894 1895
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1896
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1897 1898
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1899 1900 1901 1902 1903
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1904 1905 1906 1907
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1918 1919 1920 1921

    Examples:
        .. code-block:: python

1922 1923 1924 1925 1926 1927
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1928 1929
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1963
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1992
                                                    beta1=beta1,
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2004 2005 2006
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2007 2008
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2009 2010 2011 2012 2013

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2014
                 epsilon=1e-8,
2015
                 parameter_list=None,
X
Xin Pan 已提交
2016
                 regularization=None,
2017
                 grad_clip=None,
Q
Qiao Longfei 已提交
2018
                 name=None,
Q
Qiao Longfei 已提交
2019
                 lazy_mode=False):
2020 2021 2022 2023
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2024
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2025
            learning_rate=learning_rate,
2026
            parameter_list=parameter_list,
X
Xin Pan 已提交
2027
            regularization=regularization,
2028
            grad_clip=grad_clip,
X
Xin Pan 已提交
2029
            name=name)
2030 2031 2032 2033
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2034
        self._lazy_mode = lazy_mode
2035 2036 2037 2038 2039 2040

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2041 2042
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
2043 2044 2045
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
2046 2047
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2048
                shape=[1],
2049
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
2050 2051 2052
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
2053 2054
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2055
                shape=[1],
2056
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2057 2058 2059 2060 2061 2062 2063 2064

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
2065 2066 2067 2068
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2069
        lr = self._create_param_lr(param_and_grad)
2070
        # create the adam optimize op
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2086
        inputs = {
2087 2088
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2089
            "LearningRate": [lr],
2090 2091 2092 2093
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2094 2095
        }
        outputs = {
2096 2097 2098 2099 2100
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2117 2118
        adam_op = block.append_op(
            type=self.type,
2119 2120 2121
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2122
            stop_gradient=True)
2123 2124 2125

        return adam_op

2126 2127

class AdamaxOptimizer(Optimizer):
2128
    r"""
2129 2130 2131 2132
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2133

2134
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2148
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2162
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2163 2164
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2165 2166 2167 2168 2169
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2170 2171 2172 2173
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2174 2175 2176 2177 2178 2179
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2194
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2195 2196
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2197
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2198 2199 2200 2201 2202 2203 2204 2205 2206
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2207 2208 2209
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2210
    _beta1_pow_acc_str = "beta1_pow_acc"
2211 2212 2213 2214 2215

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2216
                 epsilon=1e-8,
2217
                 parameter_list=None,
X
Xin Pan 已提交
2218
                 regularization=None,
2219
                 grad_clip=None,
X
Xin Pan 已提交
2220
                 name=None):
2221 2222 2223 2224
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2225
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2226
            learning_rate=learning_rate,
2227
            parameter_list=parameter_list,
X
Xin Pan 已提交
2228
            regularization=regularization,
2229
            grad_clip=grad_clip,
X
Xin Pan 已提交
2230
            name=name)
2231 2232 2233 2234 2235 2236 2237 2238
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2239 2240
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2241 2242 2243 2244 2245
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2246 2247 2248 2249 2250 2251 2252

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2253 2254
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2255 2256 2257 2258 2259 2260
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2261
                "LearningRate": self._create_param_lr(param_and_grad),
2262 2263
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2264
                "Beta1Pow": beta1_pow_acc
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2275 2276
            },
            stop_gradient=True)
2277 2278 2279

        return adamax_op

2280
    def _finish_update(self, block, parameters_and_grads):
2281 2282 2283
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2284
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2285
            if grad is None or param.trainable is False:
2286
                continue
X
Xin Pan 已提交
2287 2288
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2289 2290
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2291
                block.append_op(
2292 2293 2294
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2295 2296
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2297 2298


2299
class DpsgdOptimizer(Optimizer):
2300
    r"""
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2337
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2338 2339
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2340 2341 2342 2343 2344 2345 2346 2347
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2348 2349
                 sigma=1e-8,
                 parameter_list=None):
2350 2351 2352 2353
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2354 2355
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2356 2357 2358 2359
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2360 2361 2362 2363 2364 2365 2366
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2367 2368 2369 2370 2371

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2372 2373 2374
        if self._seed == None:
            self._seed = 0

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2386 2387
                "sigma": self._sigma,
                "seed": self._seed
2388 2389 2390 2391 2392 2393
            },
            stop_gradient=True)

        return dpsgd_op


2394
class DecayedAdagradOptimizer(Optimizer):
2395
    r"""
2396 2397 2398
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2399

2400
    The parameter ``param_out`` update rule with gradient ``grad``:
2401 2402 2403 2404 2405 2406 2407

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2408 2409 2410 2411
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2412 2413 2414
    stability to avoid the division by zero error.

    Args:
2415 2416 2417 2418 2419
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2420
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2421 2422
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2423 2424 2425 2426 2427
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2428 2429 2430 2431
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2432 2433 2434 2435 2436 2437
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2438 2439 2440 2441

    Examples:
        .. code-block:: python

2442 2443
            import paddle.fluid as fluid

2444 2445 2446 2447
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2448
            optimizer.minimize(cost)
2449 2450 2451
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2452 2453 2454 2455
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2456
                 parameter_list=None,
X
Xin Pan 已提交
2457
                 regularization=None,
2458
                 grad_clip=None,
X
Xin Pan 已提交
2459
                 name=None):
2460 2461 2462 2463
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2464
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2465
            learning_rate=learning_rate,
2466
            parameter_list=parameter_list,
X
Xin Pan 已提交
2467
            regularization=regularization,
2468
            grad_clip=grad_clip,
X
Xin Pan 已提交
2469
            name=name)
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2497 2498
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2499
            stop_gradient=True)
2500 2501

        return decayed_adagrad_op
2502 2503


2504
class AdadeltaOptimizer(Optimizer):
2505
    r"""
Z
Zeng Jinle 已提交
2506
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2507

Z
Zeng Jinle 已提交
2508
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2509 2510 2511
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2512

Z
Zeng Jinle 已提交
2513 2514
    .. math::

Z
Zeng Jinle 已提交
2515
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2516

Z
Zeng Jinle 已提交
2517
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2518

Z
Zeng Jinle 已提交
2519
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2520 2521

    Args:
Z
Zeng Jinle 已提交
2522 2523 2524
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2525
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2526 2527
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2528 2529 2530 2531 2532
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2533 2534 2535 2536
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2537 2538 2539
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2540 2541 2542 2543

    Examples:
        .. code-block:: python

2544
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2545

2546
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2547 2548
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2549 2550
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2551

Z
Zeng Jinle 已提交
2552 2553 2554 2555
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2556
    """
2557

2558 2559 2560
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2561 2562 2563 2564
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2565
                 parameter_list=None,
X
Xin Pan 已提交
2566
                 regularization=None,
2567
                 grad_clip=None,
X
Xin Pan 已提交
2568
                 name=None):
2569 2570 2571 2572 2573 2574
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2575
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2576
            learning_rate=learning_rate,
2577
            parameter_list=parameter_list,
X
Xin Pan 已提交
2578
            regularization=regularization,
2579
            grad_clip=grad_clip,
X
Xin Pan 已提交
2580
            name=name)
2581 2582 2583 2584 2585
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2586 2587
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2588 2589 2590 2591 2592 2593

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2594 2595
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2617 2618
                   "rho": self._rho},
            stop_gradient=True)
2619 2620 2621 2622

        return adadelta_op


Q
qingqing01 已提交
2623
class RMSPropOptimizer(Optimizer):
2624
    r"""
Q
qingqing01 已提交
2625 2626 2627 2628 2629 2630 2631 2632
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2633
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2634 2635 2636 2637

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2638
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2639 2640 2641 2642 2643 2644

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2645
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2661 2662 2663 2664
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2665
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2666 2667 2668 2669 2670
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2671 2672 2673
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2674
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2675
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2676
        momentum(float): :math:`\\beta` in equation is the momentum term,
2677
            default is 0.0.
2678 2679 2680 2681
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2682
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2683 2684
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2685 2686 2687 2688 2689
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2690 2691 2692 2693
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2694 2695
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2696 2697 2698 2699 2700 2701 2702

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2728 2729 2730 2731
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2732
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2733 2734 2735 2736 2737 2738

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2739
                 centered=False,
2740
                 parameter_list=None,
X
Xin Pan 已提交
2741
                 regularization=None,
2742
                 grad_clip=None,
X
Xin Pan 已提交
2743
                 name=None):
Q
qingqing01 已提交
2744
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2745
            learning_rate=learning_rate,
2746
            parameter_list=parameter_list,
X
Xin Pan 已提交
2747
            regularization=regularization,
2748
            grad_clip=grad_clip,
X
Xin Pan 已提交
2749
            name=name)
Q
qingqing01 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2763
        self._centered = centered
Q
qingqing01 已提交
2764 2765 2766 2767 2768 2769 2770 2771

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2772
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2782 2783
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2784 2785 2786 2787 2788 2789 2790
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2791
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2792 2793 2794 2795 2796
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2797 2798
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2799 2800 2801 2802
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2803 2804
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2805 2806
            },
            stop_gradient=True)
Q
qingqing01 已提交
2807 2808 2809 2810

        return rmsprop_op


Q
qiaolongfei 已提交
2811
class FtrlOptimizer(Optimizer):
2812
    r"""
Q
qiaolongfei 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2851 2852 2853 2854 2855
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2856
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2857 2858
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2859 2860 2861 2862 2863
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2864 2865 2866 2867
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2868 2869
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2870 2871 2872 2873 2874 2875 2876

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2901

2902
    NOTE:
C
chengduo 已提交
2903
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2904 2905 2906 2907 2908
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2909 2910 2911 2912 2913
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2914
                 parameter_list=None,
X
Xin Pan 已提交
2915
                 regularization=None,
2916
                 grad_clip=None,
X
Xin Pan 已提交
2917
                 name=None):
Q
qiaolongfei 已提交
2918
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2919
            learning_rate=learning_rate,
2920
            parameter_list=parameter_list,
X
Xin Pan 已提交
2921
            regularization=regularization,
2922
            grad_clip=grad_clip,
X
Xin Pan 已提交
2923
            name=name)
Q
qiaolongfei 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2963
                   "l2": self._l2,
M
minqiyang 已提交
2964 2965
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2966 2967 2968 2969

        return ftrl_op


Y
Yibing Liu 已提交
2970
class LambOptimizer(AdamOptimizer):
2971
    r"""
Y
Yibing Liu 已提交
2972 2973 2974 2975
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2976 2977
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2978 2979 2980 2981 2982

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2983
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2984

Y
Yibing Liu 已提交
2985
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2986

Y
Yibing Liu 已提交
2987
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2988

Y
Yibing Liu 已提交
2989
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2990 2991 2992 2993 2994 2995


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2996 2997 2998 2999 3000 3001 3002 3003
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3004
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3005 3006
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3007 3008 3009 3010 3011
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3012 3013 3014 3015
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3016 3017 3018 3019 3020
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3021 3022 3023 3024 3025 3026

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3027
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3028 3029 3030
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3031 3032 3033 3034 3035
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3036 3037 3038 3039
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
3040
    # these two not used in op temporarily
Y
Yibing Liu 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3050
                 parameter_list=None,
Y
Yibing Liu 已提交
3051
                 regularization=None,
3052
                 grad_clip=None,
Y
Yibing Liu 已提交
3053
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3054 3055 3056 3057 3058 3059 3060 3061
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3062
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3063
            regularization=regularization,
3064
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3065 3066 3067 3068 3069 3070
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3071
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3072 3073 3074

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3075
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3086 3087 3088 3089 3090 3091
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3113
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3114 3115 3116 3117 3118 3119
            },
            stop_gradient=True)

        return lamb_op


3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3133
Dpsgd = DpsgdOptimizer
3134
DecayedAdagrad = DecayedAdagradOptimizer
3135
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3136
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3137
Ftrl = FtrlOptimizer
3138
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3139
Lamb = LambOptimizer
3140 3141 3142


class ModelAverage(Optimizer):
3143
    r"""
3144
	:api_attr: Static Graph
S
swtkiwi 已提交
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3164

3165 3166 3167 3168 3169 3170 3171 3172 3173
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3174 3175

    Args:
3176 3177 3178
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3179 3180 3181 3182 3183
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3184 3185 3186
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3187

3188
    Examples:
Q
qiaolongfei 已提交
3189 3190 3191

      .. code-block:: python

3192 3193 3194 3195 3196 3197
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3198

3199 3200 3201 3202
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3203
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3204 3205 3206 3207 3208 3209 3210 3211
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3212
                                                         max_average_window=12500)
3213 3214

            exe.run(startup_program)
3215 3216 3217 3218 3219
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3220 3221

            # apply ModelAverage
3222
            with model_average.apply(exe):
3223 3224 3225 3226
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3227 3228 3229
    """

    def __init__(self,
W
wanghaoshuang 已提交
3230
                 average_window_rate,
3231 3232
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3233 3234
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3235 3236
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3237 3238
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3239 3240 3241
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3242

3243
        self.params_grads = []
3244 3245
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3246
            if param.do_model_average != False:
3247
                grad = param.block.create_var(
3248 3249
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3250 3251
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3252
                    stop_gradient=True)
3253
                self.params_grads.append((param, grad))
3254

3255
        for param, grad in self.params_grads:
3256 3257
            if grad is None:
                continue
X
Xin Pan 已提交
3258 3259
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3260
                self._append_average_accumulate_op(param)
3261

3262 3263 3264 3265
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3266
                self._add_average_apply_op(block, param_grad)
3267 3268 3269 3270 3271

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3272
                self._add_average_restore_op(block, param_grad)
3273

3274
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3275 3276 3277 3278 3279 3280
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3281
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3282
        old_num_accumulates = block._clone_variable(
3283
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3284
        num_updates = block._clone_variable(
3285 3286 3287 3288 3289 3290
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3291 3292 3293 3294
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3295
        ops._elementwise_div(x=sum, y=tmp, out=param)
3296 3297

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3298 3299
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3337 3338
            },
            stop_gradient=True)
3339

S
rename  
sneaxiy 已提交
3340
    @signature_safe_contextmanager
3341
    def apply(self, executor, need_restore=True):
3342 3343
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3344 3345

        Args:
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3390
        """
3391 3392 3393 3394 3395 3396
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3397 3398

    def restore(self, executor):
3399 3400
        """
        Restore ``Parameter`` values of current model.
3401 3402
        
        Args:
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3447
        """
3448
        executor.run(self.restore_program)
3449 3450 3451


class ExponentialMovingAverage(object):
3452
    r"""
3453
	:api_attr: Static Graph
S
swtkiwi 已提交
3454

3455 3456 3457 3458 3459 3460
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3461
        \\text{EMA}_0 & = 0
3462

3463 3464
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3465 3466 3467 3468
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3490 3491 3492


    Args:
Y
Yibing Liu 已提交
3493 3494 3495 3496 3497 3498 3499
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3500 3501 3502 3503 3504


    Examples:

	.. code-block:: python
3505 3506 3507 3508 3509

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3510
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3511 3512 3513 3514 3515 3516 3517 3518
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3519
	    global_steps = fluid.layers.autoincreased_step_counter()
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3549 3550
    """

3551
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3552 3553 3554
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3555
        self._decay = decay
3556
        self._thres_steps = thres_steps
3557
        self._name = name if name is not None else ''
3558 3559
        self._decay_var = self._get_ema_decay()

3560
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3561
        self._params_tmps = []
3562
        for param in default_main_program().global_block().all_parameters():
3563 3564 3565 3566 3567 3568 3569
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3570
                self._params_tmps.append((param, tmp))
3571

Y
Yibing Liu 已提交
3572 3573
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3574 3575
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3576
                self._ema_vars[param.name] = self._create_ema_vars(param)
3577 3578 3579 3580

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3581
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3582
            for param, tmp in self._params_tmps:
3583 3584
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3585
                ema = block._clone_variable(self._ema_vars[param.name])
3586
                layers.assign(input=param, output=tmp)
3587
                # bias correction
3588 3589
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
3590 3591 3592 3593
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
3594 3595 3596 3597

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3598
            for param, tmp in self._params_tmps:
3599 3600 3601 3602
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3625 3626 3627 3628 3629 3630 3631
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3632
        decay_var = block._clone_variable(self._decay_var)
3633 3634
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3635

Y
Yibing Liu 已提交
3636
    def _create_ema_vars(self, param):
3637 3638 3639 3640 3641 3642 3643 3644 3645
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3646 3647 3648 3649 3650
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3651 3652
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3653
        param_master_emas = []
Y
Yibing Liu 已提交
3654 3655 3656 3657
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3658
                if param.name + '.master' in self._ema_vars:
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3676

3677 3678 3679 3680 3681 3682 3683
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3684 3685
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3701 3702 3703


class PipelineOptimizer(object):
3704
    """
3705
	:api_attr: Static Graph
S
swtkiwi 已提交
3706

3707 3708 3709 3710
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3711

3712
    Args:
3713 3714 3715 3716
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3717 3718
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3719

3720
            import paddle.fluid as fluid
H
hutuxian 已提交
3721 3722
            import paddle.fluid.layers as layers

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3739
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3740
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3741
            optimizer.minimize(loss)
3742 3743 3744 3745 3746 3747 3748 3749 3750

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3751 3752
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3753 3754
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
3755
            exe.train_from_dataset(
3756
                    fluid.default_main_program())
3757
            data_loader.reset()
3758 3759
    """

3760
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3761 3762
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
S
sandyhouse 已提交
3763 3764 3765
        supported_opt_types = (Optimizer, paddle.fluid.contrib.mixed_precision.
                               decorator.OptimizerWithMixedPrecision)
        if not isinstance(optimizer, supported_opt_types):
3766
            raise ValueError("The 'optimizer' parameter for "
S
sandyhouse 已提交
3767 3768 3769 3770
                             "PipelineOptimizer must be an instance of one of "
                             "{}, but the type is {}.".format(
                                 supported_opt_types, type(optimizer)))

H
hutuxian 已提交
3771
        self._optimizer = optimizer
S
sandyhouse 已提交
3772 3773 3774 3775 3776 3777

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

3778 3779 3780 3781
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
3782
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
3783
        self._start_cpu_core_id = start_cpu_core_id
3784 3785 3786 3787 3788 3789
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
3790
        self._param_device_map = None
S
sandyhouse 已提交
3791
        self._pipeline_pair = []
H
hutuxian 已提交
3792

3793
    def _create_vars(self, block, ori_block):
S
sandyhouse 已提交
3794
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
3795 3796
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
S
sandyhouse 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
            # Whether to insert allreduce_sum or allreduce_max op?
            # For amp and global gradient clip strategies, we should
            # get the global infomation, so allreduce op is needed.
            should_insert = False

            op = block.ops[op_idx]
            # For op process vars on all devices, remove its input 
            # vars not in this block
            reserved_x = []

            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            if op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                print('reserved_x:', reserved_x)
            if op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
            if op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True
            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
3828
            for var in vars:
3829 3830
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
S
sandyhouse 已提交
3831
                if var in used_var_set or "_blocking_queue" in var: continue
H
hutuxian 已提交
3832
                used_var_set.add(var)
3833 3834
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
3835
                if source_var.type == core.VarDesc.VarType.READER:
S
sandyhouse 已提交
3836
                    dest_var = block.create_var(
3837 3838 3839
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
3840
                else:
S
sandyhouse 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
                    dest_var = block._clone_variable(source_var, False)
                dest_var.stop_gradient = source_var.stop_gradient

            if not should_insert: continue
            out_name = op.desc.output_arg_names()[0]
            out_var = block.var(out_name)
            offset = 0
            if op.type == "reduce_any":
                # cast the bool var to int32 to use allreduce op
                temp_var_name = unique_name.generate(out_name + "_cast_int32")
                temp_var = block.create_var(
                    name=temp_var_name, shape=[1], dtype="int32")
                block._insert_op(
                    op_idx + 1 + offset,
                    type='cast',
                    inputs={'X': out_var},
                    outputs={'Out': temp_var},
                    attrs={
                        'in_dtype': out_var.dtype,
                        'out_dtype': temp_var.dtype,
                        self._op_role_key:
                        core.op_proto_and_checker_maker.OpRole.Optimize
                    })
                offset += 1
            # block._insert_op(
            #     op_idx + 1 + offset,
            #     type='c_sync_calc_stream',
            #     inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            #     outputs={
            #         'Out': temp_var if op.type == "reduce_any" else out_var
            #     },
            #     attrs={
            #         OP_ROLE_KEY:
            #         core.op_proto_and_checker_maker.OpRole.Optimize,
            #     })
            # offset += 1
            block._insert_op(
                op_idx + 1 + offset,
                type='c_allreduce_max'
                if op.type == "reduce_any" else 'c_allreduce_sum',
                inputs={'X': temp_var if op.type == "reduce_any" else out_var},
                outputs={
                    'Out': temp_var if op.type == "reduce_any" else out_var
                },
                attrs={
                    'ring_id': self.ring_id,
                    self._op_role_key:
                    core.op_proto_and_checker_maker.OpRole.Optimize,
                    'use_calc_stream': True
                })
            offset += 1
            # block._insert_op(
            #     # op_idx + 1 + extra_index,
            #     op_idx + 1 + offset,
            #     type='c_sync_comm_stream',
            #     inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            #     outputs={
            #         'Out': temp_var if op.type == "reduce_any" else out_var
            #     },
            #     attrs={
            #         'ring_id': self.ring_id,
            #         OP_ROLE_KEY:
            #         core.op_proto_and_checker_maker.OpRole.Optimize,
            #     })
            # offset += 1
            if op.type == "reduce_any":
                block._insert_op(
                    op_idx + 1 + offset,
                    type='cast',
                    inputs={'X': temp_var},
                    outputs={'Out': out_var},
                    attrs={
                        'in_dtype': temp_var.dtype,
                        'out_dtype': out_var.dtype,
                        self._op_role_key:
                        core.op_proto_and_checker_maker.OpRole.Optimize
                    })
H
hutuxian 已提交
3918

3919
    def _is_loss_grad_op(self, op):
S
sandyhouse 已提交
3920 3921
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
3922 3923 3924
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

3925
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
3926
        """
3927
        Split a program into sections according to devices that ops run on.
S
sandyhouse 已提交
3928
        The op whose op_device attr is "gpu:all" is copied to all sections.
3929 3930 3931

        Args:
            main_program (Program): the main program
3932
            devices: all used devices
H
hutuxian 已提交
3933
        """
3934 3935 3936
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
3937 3938 3939
        for device in devices:
            p = {'program': Program()}
            device_program_map[device] = p
3940

3941
        block = main_program.block(0)
3942 3943
        for op in block.ops:
            device = op.attr(self._op_device_key)
S
sandyhouse 已提交
3944 3945
            # Copy ops whose op_device set to "gpu:all" to all sections.
            if device == "gpu:all":
3946 3947 3948 3949 3950
                for device in device_program_map.keys():
                    program = device_program_map[device]
                    op_desc = op.desc
                    ap_op = program["program"].block(0).desc.append_op()
                    ap_op.copy_from(op_desc)
S
sandyhouse 已提交
3951
                    ap_op._set_attr(self._op_device_key, "")
3952 3953 3954 3955 3956
            else:
                program = device_program_map[device]
                op_desc = op.desc
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
S
sandyhouse 已提交
3957
                ap_op._set_attr(self._op_device_key, "")
3958

3959
        for key in devices:
3960 3961 3962
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3963

3964
        return programs
H
hutuxian 已提交
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

3978 3979 3980 3981 3982
    def _split_startup_program(self, startup_program, local_rank):
        block = startup_program.block(0)
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
3983 3984 3985 3986 3987 3988 3989 3990
            if device == "cpu":
                assert op.type == "fill_constant", (
                    "For ops in startup "
                    "program that with the op_device attribute of cpu, "
                    "they must be fill_constant.")
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

3991
            if device:
3992
                device_index = int(device.split(':')[1])
3993
            else:
3994 3995 3996
                # LR related ops
                device = None
            if device and device_index != local_rank: continue
3997 3998 3999 4000 4001
            op_desc = op.desc
            ap_op = new_startup_program.block(0).desc.append_op()
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4002 4003
        self._create_vars(
            new_startup_program.block(0), startup_program.global_block())
4004 4005
        return new_startup_program

4006
    def _find_post_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
4007
        """
4008 4009 4010 4011 4012 4013 4014
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
H
hutuxian 已提交
4015
        """
S
sandyhouse 已提交
4016 4017 4018 4019 4020
        # To skip the cast op added by amp which has no op_device set
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')
4021 4022
        post_op = []
        before = True
H
hutuxian 已提交
4023
        for op in ops:
4024 4025 4026 4027 4028 4029 4030 4031
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
4032
                    break
4033 4034 4035 4036 4037
        if post_op:
            return post_op[0]
        return None

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
4038
        """
4039 4040 4041 4042 4043 4044 4045
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
4046
        """
4047
        prev_op = []
H
hutuxian 已提交
4048
        for op in ops:
4049 4050
            if op.type == 'send_v2' or op.type == 'recv_v2':
                continue
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
S
sandyhouse 已提交
4082 4083
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4084
            need_check_feed=ref_var.desc.need_check_feed())
S
sandyhouse 已提交
4085
        new_var.stop_gradient = ref_var.stop_gradient
4086 4087 4088 4089
        return new_var

    def _get_data_var_info(self, block):
        """
4090
        Get info of all vars whose is_data attribute are true.
4091
        """
4092
        # map of data vars to devices that that data on
4093 4094 4095 4096
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
4097 4098 4099
                if "blocking_queue" in var_name: continue
                var = block.var(var_name)
                if not var.is_data:
4100 4101 4102 4103 4104
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
4105
        return data_devices_map
H
hutuxian 已提交
4106

4107 4108
    def _insert_sendrecv_for_data_var(self, main_block, programs, startup,
                                      devices):
4109
        """
4110
        Insert send and recv ops for data var that on other devices.
4111 4112 4113 4114 4115 4116 4117 4118

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
4119
        data_devices_map = self._get_data_var_info(main_block)
4120 4121 4122

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
4123 4124 4125 4126 4127
        insert_index = 0
        for op in first_block.ops:
            insert_index += 1
            if op.type == "read":
                break
4128
        first_dev_spec = devices[0]
4129
        first_dev_index = int(first_dev_spec.split(':')[1])
4130 4131
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
4132
                if device == first_dev_spec: continue
4133 4134 4135 4136
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
4137
                dev_index = int(device.split(':')[1])
S
sandyhouse 已提交
4138
                print("dev_index:", dev_index)
4139
                first_block._insert_op(
4140 4141
                    index=insert_index,
                    type='send_v2',
4142 4143 4144
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        self._op_device_key: first_dev_spec,
4145
                        self._op_role_key: self._op_role.Forward,
S
sandyhouse 已提交
4146
                        'use_calc_stream': False,
4147
                        'peer': dev_index,
S
sandyhouse 已提交
4148 4149 4150
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id
                        if dev_index > first_dev_index else self.ring_id + 2,
4151 4152 4153 4154 4155 4156 4157
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
4158 4159 4160 4161
                for op in block.ops:
                    index += 1
                    if op.type == "read":
                        break
4162
                source_var = main_program.block(0).var(var_name)
4163
                new_var = self._create_var(block, source_var, var_name)
4164 4165
                block._insert_op(
                    index=index,
4166
                    type='recv_v2',
4167 4168
                    outputs={'Out': [new_var]},
                    attrs={
4169 4170
                        'out_shape': new_var.shape,
                        'dtype': new_var.dtype,
4171 4172
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
4173 4174
                        'peer': first_dev_index,
                        'use_calc_stream': True,
S
sandyhouse 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id
                        if first_dev_index < dev_index else self.ring_id + 2,
                    })
                block._insert_op(
                    index=index + 1,
                    type='c_sync_comm_stream',
                    inputs={'X': [new_var]},
                    outputs={'Out': [new_var]},
                    attrs={
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id
                        if first_dev_index > dev_index else self.ring_id + 2,
4190 4191 4192 4193 4194 4195 4196 4197
                    })

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4198

4199 4200 4201 4202 4203 4204
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

S
sandyhouse 已提交
4205
    def _is_forward_op(self, op):
H
hutuxian 已提交
4206
        """
S
sandyhouse 已提交
4207
        Is the op_role attribute of a op is Forward.
H
hutuxian 已提交
4208
        """
S
sandyhouse 已提交
4209 4210
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
H
hutuxian 已提交
4211

S
sandyhouse 已提交
4212
    def _is_backward_op(self, op):
4213
        """
S
sandyhouse 已提交
4214
        Is the op_role attribute of a op is Backward.
4215
        """
S
sandyhouse 已提交
4216 4217
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Backward)
4218

S
sandyhouse 已提交
4219 4220 4221 4222 4223 4224
    def _is_loss_op(self, op):
        """
        Is the op_role attribute of a op is Loss.
        """
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4225

S
sandyhouse 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
    def _is_optimize_op(self, op):
        """
        Is the op_role attribute of a op is Optimize.
        """
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Optimize)

    def _is_lrsched_op(self, op):
        """
        Is the op_role attribute of a op is LRSched.
        """
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.LRSched)

    def _is_update_op(self, op):
        """
        Is the op updates the parameter using gradient.
        """
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

    def _get_op_device_attr(self, op):
        """
        Get the op_device attribute of a op.
        """
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
            assert device[0:3] == 'gpu', "Now, only gpu devices are " \
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
H
hutuxian 已提交
4261

S
sandyhouse 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
            op._set_attr(self._op_device_key, "gpu:all")
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(block.ops, op, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
        elif (op.type == "cast" or
              op.type == "scale") and self._is_backward_op(op):
            prev_op = self._find_real_prev_op(block.ops, op,
                                              op.desc.input("X")[0])
            op._set_attr('op_device', prev_op.attr('op_device'))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
            while (not block.ops[idx + offset].has_attr(self._op_device_key) or
                   not block.ops[idx + offset].attr(self._op_device_key)):
                offset += 1
            # assert block.ops[idx + 1].type == "fill_constant"
            # assert block.ops[idx + 2].type == "elementwise_mul_grad"
            # assert block.ops[idx + 3].type == "elementwise_add_grad"
            # assert block.ops[idx + 4].type == "mean_grad"
            # device = block.ops[idx + 4].attr(self._op_device_key)
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            # op._set_attr(self._op_device_key, device)
            # block.ops[idx + 1]._set_attr(self._op_device_key, device)
            # block.ops[idx + 2]._set_attr(self._op_device_key, device)
            # block.ops[idx + 2]._set_attr(self._op_device_key, device)
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "check_finite_and_unscale":
            #op._set_attr(self._op_device_key, "gpu:all")
            op_role_var = op.attr(self._op_role_var_key)
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
            param_name = grad_name[0].strip(core.grad_var_suffix())
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
            # For sum op added by global gradient clip, it must be 
            # put on all devices
            if (op.type == 'sum' or op.type == 'sqrt' or
                    op.type == 'fill_constant' or
                    op.type == 'elementwise_max' or
                    op.type == 'elementwise_div'):
                device = "gpu:all"
            op._set_attr(self._op_device_key, device)
        else:
            other_known_ops = [
                'update_loss_scaling', 'reduce_any', 'concat', 'sum'
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
            op._set_attr(self._op_device_key, "gpu:all")

    def _add_op_device_attr(self, block):
        """
        Add op_device attrribute for ops in block that have 
        not that attribute set.
        """
        for idx, op in enumerate(list(block.ops)):
            if (op.type == "create_py_reader" or op.type == "read" or
                    op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit 
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
                op._set_attr(self._op_device_key, "gpu:all")
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4368

4369 4370
    def _check_validation(self, block):
        """
S
sandyhouse 已提交
4371 4372
        Check whether ops in a block have the op_device attribute set.
        Then, return all devices in order.
4373
        """
S
sandyhouse 已提交
4374
        device_list = []
4375
        for op in block.ops:
S
sandyhouse 已提交
4376
            if not op._has_kernel(op.type):
4377 4378 4379 4380 4381 4382 4383
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
S
sandyhouse 已提交
4384 4385 4386 4387 4388
            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
            if device == "gpu:all": continue
            dev_type = device.split(':')[0]
4389 4390
            assert dev_type == "gpu", ("Now only gpu devices are supported "
                                       "for pipeline parallelism.")
S
sandyhouse 已提交
4391 4392 4393
            if not device in device_list:
                device_list.append(device)
        return device_list
4394

4395
    def _insert_sendrecv_ops_for_boundaries(self, block):
4396
        """
4397
        Insert a pair of send and recv ops for every two
4398 4399 4400 4401
        consecutive ops on different devices.
        """
        extra_index = 0

S
sandyhouse 已提交
4402
        # A map from var to device where op takes it as input,
4403
        # avoiding multiple send and recv ops.
S
sandyhouse 已提交
4404
        var_dev_map = dict()
4405

4406
        for index, op in enumerate(list(block.ops)):
S
sandyhouse 已提交
4407 4408
            cur_device = op.attr(self._op_device_key)
            if cur_device == "gpu:all": continue
4409 4410 4411
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
S
sandyhouse 已提交
4412
                # if not var_name in block.vars: continue
4413 4414 4415
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
4416
                prev_op = self._find_real_prev_op(block.ops, op, var_name)
S
sandyhouse 已提交
4417 4418 4419
                prev_device = prev_op.attr(self._op_device_key) \
                    if prev_op else None
                if not prev_device or prev_device == 'gpu:all': continue
4420

S
sandyhouse 已提交
4421 4422 4423 4424
                if prev_device != cur_device:
                    if var_name not in var_dev_map: var_dev_map[var_name] = []
                    if cur_device in var_dev_map[var_name]: continue
                    var_dev_map[var_name].append(cur_device)
4425 4426 4427

                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
S
sandyhouse 已提交
4428 4429
                    prev_device_index = int(prev_device.split(':')[1])
                    cur_device_index = int(cur_device.split(':')[1])
S
sandyhouse 已提交
4430 4431 4432 4433 4434 4435 4436
                    pair = (prev_device_index, cur_device_index)
                    if cur_device_index > prev_device_index:
                        ring_id = self.ring_id + cur_device_index - prev_device_index - 1
                    else:
                        ring_id = self.ring_id + 2 + prev_device_index - cur_device_index - 1
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
4437 4438
                    block._insert_op(
                        index=index + extra_index,
S
sandyhouse 已提交
4439 4440
                        #type='send_v2',
                        type='c_broadcast',
4441
                        inputs={'X': var},
S
sandyhouse 已提交
4442
                        outputs={'Out': var},
4443
                        attrs={
S
sandyhouse 已提交
4444
                            self._op_device_key: prev_device,
4445
                            self._op_role_key: op_role,
S
sandyhouse 已提交
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
                            'use_calc_stream': False,
                            #'peer': cur_device_index,
                            #'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
                            'ring_id': ring_id,
                            #'ring_id': self.ring_id,
                            #'root': prev_device_index,
                            'root': 0,
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        type='c_sync_comm_stream',
                        inputs={'X': [var]},
                        outputs={'Out': [var]},
                        attrs={
                            self._op_device_key: cur_device,
                            self._op_role_key:
                            core.op_proto_and_checker_maker.OpRole.Backward,
S
sandyhouse 已提交
4464
                            'ring_id': self.ring_id,
S
sandyhouse 已提交
4465
                            #'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
4466 4467
                        })
                    extra_index += 1
S
sandyhouse 已提交
4468 4469
                    fill_shape = list(var.shape)
                    fill_shape[0] = 1
4470 4471
                    block._insert_op(
                        index=index + extra_index,
S
sandyhouse 已提交
4472 4473 4474
                        #type='recv_v2',
                        type='fill_constant',
                        inputs={},
4475 4476
                        outputs={'Out': [var]},
                        attrs={
S
sandyhouse 已提交
4477
                            'shape': fill_shape,
4478
                            'dtype': var.dtype,
S
sandyhouse 已提交
4479
                            self._op_device_key: cur_device,
4480
                            self._op_role_key: op_role,
S
sandyhouse 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
                            'value': float(0.0),
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        #type='recv_v2',
                        type='c_broadcast',
                        inputs={'X': var},
                        outputs={'Out': var},
                        attrs={
                            #'out_shape': var.shape,
                            #'dtype': var.dtype,
                            self._op_device_key: cur_device,
                            self._op_role_key: op_role,
                            'use_calc_stream': False,
                            #'peer': prev_device_index,
                            #'root': prev_device_index,
                            'root': 0,
                            #'ring_id': self.ring_id,
                            'ring_id': ring_id,
                            #'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
                            #'ring_id': self.ring_id if prev_device_index < cur_device_index else self.ring_id + 2,
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        type='c_sync_comm_stream',
                        inputs={'X': [var]},
                        outputs={'Out': [var]},
                        attrs={
                            self._op_device_key: cur_device,
                            self._op_role_key: op_role,
S
sandyhouse 已提交
4513
                            'ring_id': self.ring_id,
S
sandyhouse 已提交
4514
                            #'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
4515 4516 4517
                        })
                    extra_index += 1

S
sandyhouse 已提交
4518
    def _clear_gradients(self, main_block, param_names):
4519 4520 4521
        """
        Clear gradients at the begining of each run of a minibatch.
        """
S
sandyhouse 已提交
4522 4523 4524 4525 4526
        # for param_name in self._param_device_map:
        print("param_names:", param_names)
        for param_name in param_names:
            # device = self._param_device_map[param_name]
            # if device != dev_spec: continue
4527
            grad_name = self._append_grad_suffix(param_name)
S
sandyhouse 已提交
4528 4529 4530 4531
            # if not main_block.has_var(grad_name): continue
            assert main_block.has_var(grad_name)
            grad_var = main_block.var(grad_name)
            grad_var.persistable = True
4532 4533 4534 4535 4536
            main_block._insert_op(
                index=0,
                type='fill_constant',
                inputs={},
                outputs={'Out': [grad_var]},
4537
                attrs={
4538 4539 4540
                    'shape': grad_var.shape,
                    'dtype': grad_var.dtype,
                    'value': float(0),
S
sandyhouse 已提交
4541
                    # self._op_device_key: device,
4542 4543
                    # a trick to run this op once per mini-batch
                    self._op_role_key: self._op_role.Optimize.LRSched,
4544 4545
                })

S
sandyhouse 已提交
4546
    def _insert_loss_scale(self, block):
4547
        """
4548
        We also scale the loss corresponding to number of micro-batches as well.
4549
        """
S
sandyhouse 已提交
4550
        if self._num_microbatches == 1: return
4551
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
4552
            offset = index
S
sandyhouse 已提交
4553
            #device = op.attr(self._op_device_key)
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
S
sandyhouse 已提交
4565
                        #self._op_device_key: device,
4566 4567 4568
                        self._op_role_key: self._op_role.Backward
                    })
                break
S
sandyhouse 已提交
4569 4570 4571

    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
4572 4573
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
S
sandyhouse 已提交
4574
                op_role_var = op.attr(self._op_role_var_key)
4575 4576 4577 4578 4579 4580

                if len(op_role_var) == 0:
                    continue
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
4581 4582 4583
                    new_grad_var_name = unique_name.generate(grad_name)
                    new_var = self._create_var(block, grad_var,
                                               new_grad_var_name)
S
sandyhouse 已提交
4584
                    new_var.persistable = False
4585
                    self._rename_arg(op, grad_name, new_grad_var_name)
S
sandyhouse 已提交
4586 4587 4588 4589 4590 4591 4592 4593

    def _accumulate_gradients(self, block):
        """
        Accumulate the gradients generated in microbatch to the one in mini-batch.
        """
        first_optimize_op_index = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # device = op.attr(self._op_device_key)
S
sandyhouse 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
                    continue

S
sandyhouse 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
            if not self._is_optimize_op(op) and not first_optimize_op_index:
                first_optimize_op_index = index + 1
                if block.ops[
                        first_optimize_op_index].type == 'c_sync_comm_stream':
                    block.ops[first_optimize_op_index]._set_attr(
                        self._op_role_key, self._op_role.Backward)
                    first_optimize_op_index += 1

            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.attr(self._op_role_var_key)

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    # clear gradient
                    param_grad_name = self._append_grad_suffix(param_name)
                    # if not main_block.has_var(grad_name): continue
                    if not block.has_var(param_grad_name):
                        self._create_var(block, block.vars[param_name],
                                         param_grad_name)
                    assert block.has_var(param_grad_name)
                    param_grad_var = block.var(param_grad_name)
                    param_grad_var.persistable = True
4631
                    block._insert_op(
S
sandyhouse 已提交
4632 4633 4634 4635
                        index=first_optimize_op_index + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [param_grad_var]},
4636
                        attrs={
S
sandyhouse 已提交
4637 4638 4639 4640 4641 4642
                            'shape': param_grad_var.shape,
                            'dtype': param_grad_var.dtype,
                            'value': float(0),
                            # self._op_device_key: device,
                            # a trick to run this op once per mini-batch
                            self._op_role_key: self._op_role.Optimize.LRSched,
4643
                        })
S
sandyhouse 已提交
4644
                    #offset += 1
S
sandyhouse 已提交
4645
                    grad_name = op_role_var[i + 1]  # with _0 suffix
S
sandyhouse 已提交
4646
                    grad_var = block.vars[grad_name]
S
sandyhouse 已提交
4647
                    real_grad_name = grad_name[0:grad_name.find(
S
sandyhouse 已提交
4648
                        '@GRAD')] + '@GRAD'  # without _0 suffix
S
sandyhouse 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657
                    real_grad_var = block.vars[
                        real_grad_name]  # without _0 suffix
                    # new_grad_var_name = unique_name.generate(grad_name)
                    # new_var = self._create_var(block, grad_var,
                    #                            new_grad_var_name)
                    # new_var.persistable = False
                    # self._rename_arg(op, grad_name, new_grad_var_name)
                    if not 'cast_fp16' in grad_name:
                        block._insert_op(
S
sandyhouse 已提交
4658
                            index=index + 1,
S
sandyhouse 已提交
4659 4660 4661 4662 4663 4664 4665 4666
                            type='sum',
                            inputs={'X': [grad_var, real_grad_var]},
                            outputs={'Out': real_grad_var},
                            attrs={
                                #self._op_device_key: device,
                                self._op_role_key: self._op_role.Backward,
                                #self._op_role_var_key: op_role_var
                            })
S
sandyhouse 已提交
4667
                        #offset += 1
S
sandyhouse 已提交
4668 4669
                    else:
                        grad_name = op_role_var[i + 1]  # with _0 suffix
S
sandyhouse 已提交
4670 4671 4672
                        grad_var = block.vars[grad_name]
                        fp32_grad_var_name = param_name + core.grad_var_suffix(
                        )  # without _0 suffix
S
sandyhouse 已提交
4673 4674 4675 4676
                        fp32_grad_var = block.vars[fp32_grad_var_name]
                        fp32_grad_var.persistable = True
                        cast_grad_var_name = unique_name.generate(
                            fp32_grad_var_name)
S
sandyhouse 已提交
4677 4678 4679
                        cast_grad_var = self._create_var(block, fp32_grad_var,
                                                         cast_grad_var_name)
                        cast_grad_var.persistable = False
S
sandyhouse 已提交
4680
                        block._insert_op(
S
sandyhouse 已提交
4681
                            index=index + 1,
S
sandyhouse 已提交
4682
                            type='cast',
S
sandyhouse 已提交
4683 4684
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
S
sandyhouse 已提交
4685
                            attrs={
S
sandyhouse 已提交
4686 4687
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
S
sandyhouse 已提交
4688 4689 4690 4691 4692 4693
                                # self._op_device_key: device,
                                self._op_role_key: self._op_role.Backward,
                                # self._op_role_var_key: op_role_var
                            })
                        offset += 1
                        block._insert_op(
S
sandyhouse 已提交
4694
                            index=index + 2,
S
sandyhouse 已提交
4695
                            type='sum',
S
sandyhouse 已提交
4696
                            inputs={'X': [fp32_grad_var, cast_grad_var]},
S
sandyhouse 已提交
4697 4698 4699 4700 4701 4702
                            outputs={'Out': fp32_grad_var},
                            attrs={
                                # self._op_device_key: device,
                                self._op_role_key: self._op_role.Backward,
                                # self._op_role_var_key: op_role_var
                            })
S
sandyhouse 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
                        offset += 1
                        #real_grad_name = grad_name[0:grad_name.find(
                        #    '@GRAD')] + '@GRAD'
                        #real_grad_var = block.vars[
                        #    real_grad_name]  # without _0 suffix
                        #block._insert_op(
                        #    index=first_optimize_op_index + offset,
                        #    type='cast',
                        #    inputs={'X': fp32_grad_var},
                        #    outputs={'Out': cast_var},
                        #    attrs={
                        #        'in_dtype': fp32_grad_var.dtype,
                        #        'out_dtype': cast_var.dtype,
                        #        # self._op_device_key: device,
                        #        self._op_role_key: self._op_role.Backward,
                        #        # self._op_role_var_key: op_role_var
                        #    })
                        #offset += 1
                        #block._insert_op(
                        #    index=first_optimize_op_index + offset,
                        #    type='sum',
                        #    inputs={'X': [grad_var, cast_var]},
                        #    outputs={'Out': real_grad_var},
                        #    attrs={
                        #        # self._op_device_key: device,
                        #        self._op_role_key: self._op_role.Backward,
                        #        # self._op_role_var_key: op_role_var
                        #    })
                        #offset += 1
                        #block._insert_op(
                        #    index=first_optimize_op_index + offset,
                        #    type='cast',
                        #    inputs={'X': real_grad_var},
                        #    outputs={'Out': fp32_grad_var},
                        #    attrs={
                        #        'in_dtype': real_grad_var.dtype,
                        #        'out_dtype': fp32_grad_var.dtype,
                        #        # self._op_device_key: device,
                        #        self._op_role_key: self._op_role.Backward,
                        #        # self._op_role_var_key: op_role_var
                        #    })
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
4760
                self._create_vars(new_sub_block, origin_sub_block)
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
4782
                if var_name == "double_buffer_0": continue
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
4800
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
S
sandyhouse 已提交
4801
                        op.type == "read" or op.type == "update_loss_scaling":
4802
                        continue
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
4822
            write_dev_index = int(write_device.split(':')[1])
4823 4824 4825
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
4826 4827 4828
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
4829 4830 4831

                write_block._insert_op(
                    index=0,
4832
                    type='send_v2',
4833 4834 4835
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
S
sandyhouse 已提交
4836
                        'use_calc_stream': False,
4837 4838
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
4839 4840
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
S
sandyhouse 已提交
4841 4842 4843
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id if
                        read_dev_index > write_dev_index else self.ring_id + 2,
4844 4845 4846
                    })
                read_block._insert_op(
                    index=0,
4847
                    type='recv_v2',
4848 4849
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
4850 4851
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
4852
                        self._op_device_key: read_device,
S
sandyhouse 已提交
4853
                        'use_calc_stream': False,
4854 4855 4856
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
S
sandyhouse 已提交
4857
                        'peer': write_dev_index,
S
sandyhouse 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id if
                        write_dev_index < read_dev_index else self.ring_id + 2,
                    })
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        #'ring_id': self.ring_id,
                        'ring_id': self.ring_id if
                        write_dev_index > read_dev_index else self.ring_id + 2,
4875
                    })
H
hutuxian 已提交
4876

S
sandyhouse 已提交
4877 4878 4879 4880 4881 4882 4883 4884
    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")

H
hutuxian 已提交
4885 4886 4887 4888 4889
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4890 4891 4892 4893 4894
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
S
sandyhouse 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
        self._param_device_map = self._origin_optimizer._param_device_map
        assert main_block.program._pipeline_opt \
            and 'local_rank' in main_block.program._pipeline_opt, \
            'Please use pipeline with fleet.'
        local_rank = main_block.program._pipeline_opt['local_rank']

        self.use_sharding = False
        if 'use_sharding' in main_block.program._pipeline_opt:
            self.use_sharding = main_block.program._pipeline_opt['use_sharding']

        self.ring_id = 0
        if 'ring_id' in main_block.program._pipeline_opt:
            self.ring_id = main_block.program._pipeline_opt['ring_id']

        if main_block.program._pipeline_opt['global_rank'] == 0:
            with open("startup_raw", 'w') as f:
                f.writelines(str(startup_program))
            with open("main_raw", 'w') as f:
                f.writelines(str(main_block.program))

        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

S
sandyhouse 已提交
4929 4930 4931 4932
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
4933

S
sandyhouse 已提交
4934
        # Step2: add send and recv ops between section boundaries
4935
        self._insert_sendrecv_ops_for_boundaries(main_block)
4936

S
sandyhouse 已提交
4937
        # Step3: split program into sections and add pairs of
4938 4939
        # send and recv ops for data var.
        main_program = main_block.program
S
sandyhouse 已提交
4940
        program_list = self._split_program(main_program, device_list)
4941
        for p in program_list:
S
sandyhouse 已提交
4942
            self._create_vars(p["program"].block(0), main_block)
S
sandyhouse 已提交
4943 4944
        #self._insert_sendrecv_for_data_var(main_block, program_list,
        #                                   startup_program, device_list)
4945

S
sandyhouse 已提交
4946
        # Step4: Special Case: process persistable vars that exist in
4947 4948 4949 4950
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

S
sandyhouse 已提交
4951
        # Step5: Add sub blocks for section programs
4952 4953
        self._add_sub_blocks(main_block, program_list)

S
sandyhouse 已提交
4954
        local_rank = main_program._pipeline_opt['local_rank'] % len(device_list)
4955 4956

        place_list = []
S
sandyhouse 已提交
4957
        for dev in device_list:
S
sandyhouse 已提交
4958 4959
            dev_index = int(dev.split(":")[1])
            place_list.append(core.CUDAPlace(dev_index % 8))
4960

S
sandyhouse 已提交
4961
        # Step6: Split startup program
4962 4963 4964 4965 4966
        new_startup_program = self._split_startup_program(startup_program,
                                                          local_rank)
        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
4967

S
sandyhouse 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
        real_block = program_list[local_rank]['program'].global_block()
        self._insert_loss_scale(real_block)
        if not self.use_sharding:
            # Step7: clear gradients before each mini-batch and 
            # accumulate gradients during backward
            param_list = []
            for param, grad in params_grads:
                if real_block.has_var(param): param_list.append(param)
            #self._clear_gradients(real_block, param_list)
            self._rename_gradient_var_name(real_block)
            self._accumulate_gradients(real_block)

4980
        place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
4981
        main_program._pipeline_opt = {
H
hutuxian 已提交
4982 4983
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
S
sandyhouse 已提交
4984
            "inner_parallelism": len(device_list),
S
sandyhouse 已提交
4985 4986
            "num_pipeline_stages": len(device_list),
            "pipeline_stage": local_rank,
4987 4988
            "section_program": program_list[local_rank],
            "place": place_list[local_rank],
4989
            "place_id": place_id,
4990
            "sync_steps": -1,
L
lilong12 已提交
4991
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4992 4993
            "start_cpu_core_id": self._start_cpu_core_id,
        }
S
sandyhouse 已提交
4994
        return optimize_ops, params_grads, program_list, self._pipeline_pair
M
mapingshuo 已提交
4995 4996


M
mapingshuo 已提交
4997 4998
class RecomputeOptimizer(Optimizer):
    """
4999
	:api_attr: Static Graph
S
swtkiwi 已提交
5000

M
mapingshuo 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
5061 5062
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
5063 5064
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
5065 5066
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
5067
        self.enable_offload = False
M
mapingshuo 已提交
5068 5069

    def _set_checkpoints(self, checkpoints):
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
5081 5082
        self._checkpoints = checkpoints

J
JZ-LIANG 已提交
5083 5084 5085 5086
    # should enable offload before calling backward 
    def _enable_offload(self):
        self.enable_offload = True

5087 5088
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
5089
        """
5090
	    :api_attr: Static Graph
S
swtkiwi 已提交
5091

M
mapingshuo 已提交
5092 5093 5094 5095
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
5096
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
5120 5121
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5159
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5160 5161 5162 5163
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5164
                    no_grad_set=None)
M
mapingshuo 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                })

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
                                op_role, kind):
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
            attrs={"dst_place_type": int(kind),
                   OP_ROLE_KEY: op_role})

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 2)

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 3)

    def _insert_sync_op(self, op_idx, checkpoint_name):
        # single stream offload no need sync 
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, to favor throughput        
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
                            # there is NO fetch ahead the first checkpoint 
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

                        # should check the current used checkpoint is ths last fetch one 
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] fetch op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, faster, less memory saving       
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

        for i, op in enumerate(self.block.ops[self.fw_strart_op_idx:
                                              self.bw_strart_op_idx]):

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
                            "There should be just ONE op that output checkpoint [{}]".
                            format(output_var))
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
            # record checkpoint usage  
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload_sync op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
            startup_program = fluid.default_startup_program()

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".
                format(self.checkpoint_shape))
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
                "all ele in checkpoints shape {} should be a determined integer larger than 0".
                format(self.checkpoint_shape))
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
5527 5528 5529 5530 5531
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
5532
                 callbacks=None):
M
mapingshuo 已提交
5533 5534 5535 5536 5537 5538 5539
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
5540 5541
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5566
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5567 5568 5569 5570
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5571
                    no_grad_set=None)
M
mapingshuo 已提交
5572 5573
                print("Finished backward")
        """
5574 5575
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
5576 5577 5578 5579 5580 5581 5582 5583

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
5584 5585 5586 5587 5588 5589 5590
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
5628
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
5629 5630 5631 5632 5633 5634 5635 5636
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5637
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5638 5639 5640 5641
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5642
                    no_grad_set=None)
M
mapingshuo 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
5657
                 no_grad_set=None):
5658
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
5668
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
5669 5670 5671 5672 5673 5674 5675

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
5676
class LookaheadOptimizer(object):
5677
    r"""
5678
	:api_attr: Static Graph
S
swtkiwi 已提交
5679

M
mapingshuo 已提交
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
5705
            import numpy.random as random
M
mapingshuo 已提交
5706

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
            loss = fluid.layers.mean(x=loss)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
5734 5735 5736 5737 5738

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
5739 5740
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

5792 5793 5794 5795 5796 5797 5798 5799
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
5800

5801 5802 5803 5804 5805 5806 5807
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
5808

5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
5827 5828 5829 5830 5831
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
5845
        return mini_out
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

5903 5904
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
5920
        self._optimize_ops = None
5921

5922 5923 5924 5925 5926 5927
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

5928
    def backward(self,
5929 5930 5931
                 loss,
                 startup_program=None,
                 parameter_list=None,
5932 5933
                 no_grad_set=None,
                 callbacks=None):
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
S
sandyhouse 已提交
5954
        backward = core.op_proto_and_checker_maker.OpRole.Bcackward
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=True,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var,
                        'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var})

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
6061 6062

        #TODO(mapingshuo) support sparse embedding
6063 6064
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
6065
            assert (
6066
                param.type != core.VarDesc.VarType.SELECTED_ROWS
6067 6068
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

6069
            self._remove_op_role_var(param, grad)
6070

6071
        param_to_grad = {k.name: v for (k, v) in params_grads}
6072 6073 6074
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

6075 6076 6077 6078 6079
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
6080 6081 6082 6083 6084 6085 6086 6087
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
6088

6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
                inputs={'X': grad,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False
                        })
6134

6135 6136 6137 6138 6139 6140
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
6141

6142 6143
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
6144

6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad)

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
6173 6174

        return optimize_ops, params_grads