attention_lstm_op.cc 17.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
16
#include <sys/time.h>
T
tensor-tang 已提交
17 18
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/platform/cpu_info.h"
22

T
tensor-tang 已提交
23 24 25
namespace paddle {
namespace operators {

26
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
                 "Input(C0) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
                 "Input(LSTMWeight) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
                 "Input(LSTMBias) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
                 "Input(AttentionWeight) of AttentionLSTM should not be null.");

T
tensor-tang 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
39
                 "Output(Hidden) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
40
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49
                 "Output(Cell) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
                 "Output(AttentionedX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
                 "Output(AttentionFCOut) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
                 "Output(LSTMX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
                 "Output(LSTMOUT) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
50 51

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
52
  const int M = x_dims[1];
T
tensor-tang 已提交
53 54
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
55 56 57 58 59 60 61 62
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D + M, 4 * D);

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
tensor-tang 已提交
63 64
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
T
tensor-tang 已提交
65 66 67 68

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
69 70 71 72 73 74 75
  if (ctx->HasInput("H0")) {
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  if (ctx->HasInput("AttentionBias")) {
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalar")) {
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalarBias")) {
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
        ctx->HasInput("AttentionScalar"),
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
113 114
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
115 116 117 118
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
119 120 121 122
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

123
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
124 125 126 127 128 129
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

130
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
131 132 133 134 135
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
136 137 138 139 140
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
141
  AddInput("H0",
142 143 144
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
145
      .AsDispensable();
146 147 148 149
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
150 151
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
152 153 154 155 156 157 158 159 160 161
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
162
      .AsDispensable();
163 164 165 166 167 168 169 170 171 172
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
173 174 175 176 177 178
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
179 180 181 182
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
183
      .AsIntermediate();
184 185
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
186
      .AsIntermediate();
187 188 189 190 191 192 193 194 195
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
196 197 198 199 200
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
201
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
202 203 204 205
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
206
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
207 208 209 210 211
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
212
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
213
  AddComment(R"DOC(
214 215 216 217 218 219 220 221 222 223 224 225 226 227
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
228 229 230
)DOC");
}

231 232 233 234 235 236 237
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
    for (int i = 0; i < n; ++i) {
      y[i] = x[i] + bias[0];
    }
T
tensor-tang 已提交
238
    math::vec_relu<T>(n, y, y);
239
  } else {
T
tensor-tang 已提交
240
    math::vec_relu<T>(n, x, y);
241 242 243
  }
}

T
tensor-tang 已提交
244
template <typename DeviceContext, typename T>
T
tensor-tang 已提交
245
inline void vec_softmax(const math::BlasT<DeviceContext, T>& blas, const int n,
246 247 248 249 250 251 252 253 254
                        const T* x, T* y) {
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }

  // sub
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
255
    y[i] = x[i] - scalar;
256 257 258 259 260 261 262 263 264 265 266 267
  }

  // exp
  blas.VEXP(n, y, y);

  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }

  // scale
T
tensor-tang 已提交
268
  blas.SCAL(n, static_cast<T>(1) / scalar, y);
269 270
}

T
tensor-tang 已提交
271
template <typename T>
272
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
273 274
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
275
    using DeviceContext = paddle::platform::CPUDeviceContext;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
293 294 295 296 297

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
298 299 300 301
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
302 303 304 305 306 307 308 309 310 311 312
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
313

314 315 316 317 318
    math::VecActivations<T> act_functor;
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
    act_gate = act_functor(ctx.Attr<std::string>("gate_activation"));
    act_cell = act_functor(ctx.Attr<std::string>("cell_activation"));
    act_cand = act_functor(ctx.Attr<std::string>("candidate_activation"));
T
tensor-tang 已提交
319

T
tensor-tang 已提交
320
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
321
    const T* h0_data = h0 ? h0->data<T>() : NULL;
322 323 324 325 326 327 328 329 330
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
331 332 333 334 335 336
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
337 338 339

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
340
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
341 342
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
343
    const T* cur_atten_x_data = atted_x_data;
344 345 346 347 348
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
349
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
350
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
351
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
352
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
353
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
354 355
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
356
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
357 358 359
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
360
        if (atten_scalar_data) {
T
tensor-tang 已提交
361
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
362 363 364
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
365
        // 1d. softmax
366 367 368 369 370
        vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
371
        /// 2. compute LSTM step
372 373 374 375 376 377 378 379 380 381 382 383 384
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
385
        act_gate(D3, lstm_out_data, lstm_out_data);
386
        // candicate act: tanh
387
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
388 389 390 391 392

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
393
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
394 395 396 397 398

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
399
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
400
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
401

T
tensor-tang 已提交
402
        prev_hidden_data = cur_hidden_out_data;
403 404 405
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
406
      }
407
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
408
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
409 410 411 412 413 414 415 416
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
417 418
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
419 420
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
421 422
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);