Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ec59f0d4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ec59f0d4
编写于
8月 22, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cpu vec
上级
cf5ea925
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
95 addition
and
45 deletion
+95
-45
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+11
-45
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+81
-0
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+2
-0
paddle/fluid/platform/cpu_info.h
paddle/fluid/platform/cpu_info.h
+1
-0
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
ec59f0d4
...
...
@@ -15,9 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
// #include "paddle/fluid/operators/math/detail/activation_functions.h"
// #include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -230,13 +230,6 @@ use lstm_x_t as input and compute as standard LSTM.
)DOC"
);
}
template
<
typename
T
>
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
...
...
@@ -244,9 +237,9 @@ inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
bias
[
0
];
}
vec_relu
<
T
>
(
n
,
y
,
y
);
math
::
vec_relu
<
T
>
(
n
,
y
,
y
);
}
else
{
vec_relu
<
T
>
(
n
,
x
,
y
);
math
::
vec_relu
<
T
>
(
n
,
x
,
y
);
}
}
...
...
@@ -277,37 +270,6 @@ inline void vec_softmax(const math::BlasT<DeviceContext, T>& blas, const int n,
blas
.
SCAL
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
}
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template
<
typename
T
>
inline
T
sigmoid
(
T
x
)
{
return
1.
/
(
1.
+
exp
(
-
x
));
}
template
<
typename
T
>
inline
T
tanh
(
T
x
)
{
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
}
template
<
typename
T
>
inline
void
vec_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
T
tmp
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
1.0
/
(
1.0
+
std
::
exp
(
-
tmp
));
}
}
template
<
typename
T
>
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
tanh
<
T
>
(
x
[
i
]);
}
}
template
<
typename
T
>
class
AttentionLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -351,6 +313,10 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
fc_out
->
Resize
({
max_seq_len
,
1
});
// TODO(TJ): act functor init here
// if (platform::jit::MayIUse(platform::jit::avx2)) {
// } else if (platform::jit::MayIUse(platform::jit::avx)) {
// } else {
// }
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
...
...
@@ -418,9 +384,9 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
blas
.
VADD
(
D4
,
lstm_b_data
,
lstm_out_data
,
lstm_out_data
);
// gate act: sigmoid
vec_sigmoid
(
D3
,
lstm_out_data
,
lstm_out_data
);
math
::
vec_sigmoid
(
D3
,
lstm_out_data
,
lstm_out_data
);
// candicate act: tanh
vec_tanh
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
math
::
vec_tanh
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
lstm_out_data
,
prev_cell_data
,
lstm_out_data
);
...
...
@@ -432,7 +398,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
blas
.
VADD
(
D
,
lstm_out_data
,
lstm_out_data
+
D
,
cur_cell_out_data
);
// state act tanh(cell_out) * output_gate
vec_tanh
(
D
,
cur_cell_out_data
,
lstm_out_data
);
math
::
vec_tanh
(
D
,
cur_cell_out_data
,
lstm_out_data
);
blas
.
VMUL
(
D
,
lstm_out_data
,
lstm_out_data
+
D2
,
cur_hidden_out_data
);
prev_hidden_data
=
cur_hidden_out_data
;
...
...
paddle/fluid/operators/math/cpu_vec.h
0 → 100644
浏览文件 @
ec59f0d4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template
<
typename
T
>
inline
T
sigmoid
(
T
x
)
{
return
1.
/
(
1.
+
exp
(
-
x
));
}
template
<
typename
T
>
inline
T
tanh
(
T
x
)
{
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
T
tmp
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
1.0
/
(
1.0
+
std
::
exp
(
-
tmp
));
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
tanh
<
T
>
(
x
[
i
]);
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/cpu_info.cc
浏览文件 @
ec59f0d4
...
...
@@ -112,6 +112,8 @@ bool MayIUse(const cpu_isa_t cpu_isa) {
switch
(
cpu_isa
)
{
case
sse42
:
return
cpu
.
has
(
Cpu
::
tSSE42
);
case
avx
:
return
cpu
.
has
(
Cpu
::
tAVX
);
case
avx2
:
return
cpu
.
has
(
Cpu
::
tAVX2
);
case
avx512_common
:
...
...
paddle/fluid/platform/cpu_info.h
浏览文件 @
ec59f0d4
...
...
@@ -43,6 +43,7 @@ namespace jit {
typedef
enum
{
isa_any
,
sse42
,
avx
,
avx2
,
avx512_common
,
avx512_core
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录