attention_lstm_op.cc 17.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
                 "Input(C0) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
                 "Input(LSTMWeight) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
                 "Input(LSTMBias) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
                 "Input(AttentionWeight) of AttentionLSTM should not be null.");

T
tensor-tang 已提交
37
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
38
                 "Output(Hidden) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
39
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
40 41 42 43 44 45 46 47 48
                 "Output(Cell) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
                 "Output(AttentionedX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
                 "Output(AttentionFCOut) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
                 "Output(LSTMX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
                 "Output(LSTMOUT) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
49 50

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
51
  const int M = x_dims[1];
T
tensor-tang 已提交
52 53
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D + M, 4 * D);

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x (%d + %d).", M,
                    D);
  PADDLE_ENFORCE_EQ(b_dims[1], M + D, "LSTMBias dims should be 1 x (%d + %d).",
                    M, D);

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
70 71 72 73 74 75 76
  if (ctx->HasInput("H0")) {
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  if (ctx->HasInput("AttentionBias")) {
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalar")) {
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalarBias")) {
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
        ctx->HasInput("AttentionScalar"),
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
114 115
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
116 117 118 119
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
120 121 122 123
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

124
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
125 126 127 128 129 130
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

131
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
132 133 134 135 136
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
137 138 139 140 141
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
142
  AddInput("H0",
143 144 145
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
146
      .AsDispensable();
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
  AddInput("AttentionBias, optional",
           "(Tensor) the bias of attention fc."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
163
      .AsDispensable();
164 165 166 167 168 169 170 171 172 173
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
174 175 176 177 178 179
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
180 181 182 183
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
184
      .AsIntermediate();
185 186
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
187
      .AsIntermediate();
188 189 190 191 192 193 194 195 196 197
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
  // TODO(TJ): InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
198 199 200 201 202
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
203
      .InEnum({"sigmoid"});
T
tensor-tang 已提交
204 205 206 207
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
208
      .InEnum({"tanh"});
T
tensor-tang 已提交
209 210 211 212 213
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
214
      .InEnum({"tanh"});
T
tensor-tang 已提交
215
  AddComment(R"DOC(
216 217 218 219 220 221 222 223 224 225 226 227 228 229
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
230 231 232
)DOC");
}

233 234 235 236 237 238 239
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
    for (int i = 0; i < n; ++i) {
      y[i] = x[i] + bias[0];
    }
T
tensor-tang 已提交
240
    math::vec_relu<T>(n, y, y);
241
  } else {
T
tensor-tang 已提交
242
    math::vec_relu<T>(n, x, y);
243 244 245
  }
}

T
tensor-tang 已提交
246
template <typename DeviceContext, typename T>
T
tensor-tang 已提交
247
inline void vec_softmax(const math::BlasT<DeviceContext, T>& blas, const int n,
248 249 250 251 252 253 254 255 256
                        const T* x, T* y) {
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }

  // sub
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
257
    y[i] = x[i] - scalar;
258 259 260 261 262 263 264 265 266 267 268 269
  }

  // exp
  blas.VEXP(n, y, y);

  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }

  // scale
T
tensor-tang 已提交
270
  blas.SCAL(n, static_cast<T>(1) / scalar, y);
271 272
}

T
tensor-tang 已提交
273
template <typename T>
274
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
275 276
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
277
    using DeviceContext = paddle::platform::CPUDeviceContext;
278 279 280 281 282 283 284 285 286 287
    auto* x = ctx.Input<LoDTensor>("X");                        // T x M
    auto* h0 = ctx.Input<Tensor>("H0");                         // N x D
    auto* c0 = ctx.Input<Tensor>("C0");                         // N x D
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");       // (M+D) x 1
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");         // 1x1
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");  // (D+M) x D*4
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");    // 1 x D*4

T
tensor-tang 已提交
288 289 290
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");   // TxD
    auto* cell_out = ctx.Output<LoDTensor>("Cell");       // TxD
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");   // T x 1
T
tensor-tang 已提交
291
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");  // max_seq_len x 1
T
tensor-tang 已提交
292 293 294 295 296 297 298
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");           // 1 x M
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");       // 1 x 4D

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
299 300 301 302
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
303 304 305 306 307 308 309 310 311 312 313
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
314

T
tensor-tang 已提交
315
    // TODO(TJ): act functor init here
T
tensor-tang 已提交
316 317 318 319
    // if (platform::jit::MayIUse(platform::jit::avx2)) {
    // } else if (platform::jit::MayIUse(platform::jit::avx)) {
    // } else {
    // }
T
tensor-tang 已提交
320

T
tensor-tang 已提交
321
    const T* x_data = x->data<T>();
322 323 324 325 326 327 328 329 330 331
    const T* h0_data = h0->data<T>();
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
332 333 334 335 336 337
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
338 339 340

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
341
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
342 343 344 345 346 347 348
                                      atted_x_data, atten_b_data);

    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
349
    for (int i = 0; i < N; ++i) {
350 351 352 353 354 355 356 357
      int seq_len = x_lod[0][i + 1];
      prev_cell_data = c0_data + i * D;
      prev_hidden_data = h0 ? h0_data + i * D : NULL;

      for (int step = 0; step < seq_len; ++step) {
        /// compute attention vector
        // prev_cell(1xD) * fc(D) rest part of atten_wgt
        // T  = cblas_dot();
T
tensor-tang 已提交
358
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
359 360 361 362 363
        // add cell bias and relu
        bias_relu<T>(seq_len, atted_x_data, &prev_cell_bias, fc_out_data);
        // fc2: scalar
        if (atten_scalar_data) {
          // x = a*x
T
tensor-tang 已提交
364
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
        vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

        /// compute LSTM step
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
T
tensor-tang 已提交
387
        math::vec_sigmoid(D3, lstm_out_data, lstm_out_data);
388
        // candicate act: tanh
T
tensor-tang 已提交
389
        math::vec_tanh(D, lstm_out_data + D3, lstm_out_data + D3);
390 391 392 393 394

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
395
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
396 397 398 399 400

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
T
tensor-tang 已提交
401
        math::vec_tanh(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
402
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
403

T
tensor-tang 已提交
404
        prev_hidden_data = cur_hidden_out_data;
405 406 407
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
408
      }
409
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
410 411 412 413 414 415 416 417
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
418 419
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
420 421
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
422 423
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);