attention_lstm_op.cc 18.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"

23 24
#include "paddle/fluid/operators/math/cpu_vec.h"

T
tensor-tang 已提交
25 26 27
namespace paddle {
namespace operators {

28
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
29 30 31 32 33 34 35 36 37 38 39
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
                 "Input(C0) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
                 "Input(LSTMWeight) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
                 "Input(LSTMBias) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
                 "Input(AttentionWeight) of AttentionLSTM should not be null.");

T
tensor-tang 已提交
40
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
41
                 "Output(Hidden) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
42
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
43 44 45 46 47 48 49 50 51
                 "Output(Cell) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
                 "Output(AttentionedX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
                 "Output(AttentionFCOut) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
                 "Output(LSTMX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
                 "Output(LSTMOUT) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
52 53

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
54
  const int M = x_dims[1];
T
tensor-tang 已提交
55 56
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D + M, 4 * D);

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x (%d + %d).", M,
                    D);
  PADDLE_ENFORCE_EQ(b_dims[1], M + D, "LSTMBias dims should be 1 x (%d + %d).",
                    M, D);

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
73 74 75 76 77 78 79
  if (ctx->HasInput("H0")) {
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  if (ctx->HasInput("AttentionBias")) {
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalar")) {
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalarBias")) {
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
        ctx->HasInput("AttentionScalar"),
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
117 118
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
119 120 121 122
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
123 124 125 126
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

127
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
128 129 130 131 132 133
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

134
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
135 136 137 138 139
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
140 141 142 143 144
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
145
  AddInput("H0",
146 147 148
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
149
      .AsDispensable();
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
  AddInput("AttentionBias, optional",
           "(Tensor) the bias of attention fc."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
166
      .AsDispensable();
167 168 169 170 171 172 173 174 175 176
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
177 178 179 180 181 182
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
183 184 185 186
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
187
      .AsIntermediate();
188 189
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
190
      .AsIntermediate();
191 192 193 194 195 196 197 198 199 200
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
  // TODO(TJ): InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
201 202 203 204 205
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
206
      .InEnum({"sigmoid"});
T
tensor-tang 已提交
207 208 209 210
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
211
      .InEnum({"tanh"});
T
tensor-tang 已提交
212 213 214 215 216
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
217
      .InEnum({"tanh"});
T
tensor-tang 已提交
218
  AddComment(R"DOC(
219 220 221 222 223 224 225 226 227 228 229 230 231 232
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
233 234 235
)DOC");
}

236 237 238 239 240 241 242 243 244 245 246 247 248
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
    for (int i = 0; i < n; ++i) {
      y[i] = x[i] + bias[0];
    }
    vec_relu(n, y, y);
  } else {
    vec_relu(n, x, y);
  }
}

T
tensor-tang 已提交
249
template <typename DeviceContext, typename T>
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
inline void vec_softmax(const BlasT<DeviceContext, T>& blas, const int n,
                        const T* x, T* y) {
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }

  // sub
  for (int i = 0; i < n; ++i) {
    y[c] = x[c] - alpha;
  }

  // exp
  blas.VEXP(n, y, y);

  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }

  // scale
  blas.VSCAL(n, static_cast<T>(1) / scalar, y);
}

__m256 exp(__m256 a) { return exp256_ps(a); }

__m256 log(__m256 a) { return log256_ps(a); }

__m256 sin(__m256 a) { return sin256_ps(a); }

__m256 cos(__m256 a) { return cos256_ps(a); }

__m256 relu(const __m256 a) {
  __m256 tmp = _mm256_set1_ps(0.0f);
  return _mm256_max_ps(a, tmp);
}

__m256 sigmoid(const __m256 a) {
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 tmp = _mm256_max_ps(a, min);
  tmp = _mm256_min_ps(tmp, max);
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp);
  tmp = exp(tmp);
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp);
  return tmp;
}

__m256 tanh(const __m256 a) {
  __m256 max = _mm256_set1_ps(EXP_MAX_INPUT);
  __m256 tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), a);
  tmp = _mm256_min_ps(tmp, max);
  tmp = exp(tmp);
  return _mm256_sub_ps(_mm256_div_ps(_mm256_set1_ps(2.0f),
                                     _mm256_add_ps(_mm256_set1_ps(1.0f), tmp)),
                       _mm256_set1_ps(1.0f));
}

__m256 linear(const __m256 a) { return a; }

inline void vec_sigmoid(const T* x, T* y) {
  const real min = SIGMOID_THRESHOLD_MIN;
  const real max = SIGMOID_THRESHOLD_MAX;
  real tmp = (a < min) ? min : ((a > max) ? max : a);
  return 1.0 / (1.0 + exp(-tmp));
T
tensor-tang 已提交
318 319 320
}

template <typename DeviceContext, typename T>
321
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
322 323
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
324 325 326 327 328 329 330 331 332 333
    auto* x = ctx.Input<LoDTensor>("X");                        // T x M
    auto* h0 = ctx.Input<Tensor>("H0");                         // N x D
    auto* c0 = ctx.Input<Tensor>("C0");                         // N x D
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");       // (M+D) x 1
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");         // 1x1
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");  // (D+M) x D*4
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");    // 1 x D*4

T
tensor-tang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");   // TxD
    auto* cell_out = ctx.Output<LoDTensor>("Cell");       // TxD
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");   // T x 1
    auto* fc_out = ctx.Output<Tensor>('AttentionFCOut');  // max_seq_len x 1
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");           // 1 x M
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");       // 1 x 4D

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
    auto w_dims = w->dims();            // (D+M) x 4D
    const int M = x_dims[1];            // x frame size
    const int D = w_dims[1] / 4;        // gate frame size
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
359 360

    const T* x_data = x->data<T>();
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    const T* h0_data = h0->data<T>();
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

    T* hidden_out_data = hidden_out->mutable_data<T>();
    T* cell_out_data = cell_out->mutable_data<T>();
    T* atted_x_data = atted_x->mutable_data<T>();
    T* fc_out_data = fc_out->mutable_data<T>();
    T* lstm_x_data = lstm_x->mutable_data<T>();
    T* lstm_out_data = lstm_out->mutable_data<T>();

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, T, 1, M, x_data, atten_w_data,
                                      atted_x_data, atten_b_data);

    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
388
    for (int i = 0; i < N; ++i) {
389 390 391 392 393 394 395 396
      int seq_len = x_lod[0][i + 1];
      prev_cell_data = c0_data + i * D;
      prev_hidden_data = h0 ? h0_data + i * D : NULL;

      for (int step = 0; step < seq_len; ++step) {
        /// compute attention vector
        // prev_cell(1xD) * fc(D) rest part of atten_wgt
        // T  = cblas_dot();
T
tensor-tang 已提交
397
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
398 399 400 401 402
        // add cell bias and relu
        bias_relu<T>(seq_len, atted_x_data, &prev_cell_bias, fc_out_data);
        // fc2: scalar
        if (atten_scalar_data) {
          // x = a*x
T
tensor-tang 已提交
403
          blas.SCAL(seq_len, atten_scalar_data, fc_out_data);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
        vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

        /// compute LSTM step
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
        vec_sigmoid(D3, lstm_out_data, lstm_out_data);
        // candicate act: tanh
        vec_tanh(D, lstm_out_data + D3, lstm_out_data + D3);

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
        blas.VMUL(D, lstm_out_data + D, lstm_out + D3, lstm_out_data + D);

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
        vec_tanh(D, cur_cell_out_data, lstm_out_data);
        blas.VMUL(D, lstm_out_data, lstm_out + D2, cur_hidden_out_data);

        prev_hidden_data = hidden_out + i * gate_size;
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
447
      }
448
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
449 450 451 452 453 454 455 456
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
457 458
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
459 460 461
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(
462 463 464
    attention_lstm,
    ops::AttentionLSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AttentionLSTMKernel<paddle::platform::CPUDeviceContext, double>);