ProcessGroupNCCL.cc 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20 21 22
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
39 40
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
41 42 43 44
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
45 46 47
    std::vector<Place> places,
    int rank,
    CommType comm_type,
48
    const std::vector<phi::DenseTensor>& inputs) {
49 50
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
51 52
}

53
ProcessGroupNCCL::NCCLTask::NCCLTask(
54 55 56
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
57
    const std::vector<phi::DenseTensor>& inputs)
58 59 60 61 62 63 64 65
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
66 67
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>& split_sizes,
                                       std::vector<int64_t> tensor_shape) {
  int64_t len_size = split_sizes.size();
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
    split_sizes.insert(split_sizes.end(),
                       size_,
                       static_cast<int64_t>(tensor_shape[0] / size_));
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
        split_sizes.begin(), split_sizes.end(), static_cast<int64_t>(0));
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

116 117 118 119 120 121 122 123 124
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
125 126 127 128 129

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
130
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
131
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
132 133 134
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
135 136
    }
  }
137 138 139 140 141 142
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

143
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
144 145 146 147
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
148 149 150
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
151 152 153

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
154 155
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
156 157
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
158 159 160 161 162 163 164
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
165 166
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
167 168 169
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
170 171 172 173 174 175
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
176 177
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
178 179 180 181 182 183 184 185 186 187 188 189
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
190 191 192 193
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

194 195 196 197 198
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

199 200
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
227
    std::vector<phi::DenseTensor>& inputs,
228 229 230
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
254
      memory::RecordStream(inputs[i].Holder(),
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

275 276
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
277 278
                                  phi::DenseTensor* out,
                                  Fn fn,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
313 314
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
315 316 317
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
318
    CommType op_type) {
B
Baibaifan 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
341
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

362
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
363
    std::vector<phi::DenseTensor>& in_tensors,
364 365
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
366
  PADDLE_ENFORCE_EQ(
367 368
      CheckTensorsInCudaPlace(in_tensors),
      true,
369
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
370
  return Collective(
371 372 373 374 375 376
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
377
        return platform::dynload::ncclAllReduce(
378 379 380
            input.data(),
            output.data(),
            input.numel(),
381
            platform::ToNCCLDataType(input.type()),
382 383 384
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
385 386
      },
      CommType::ALLREDUCE);
387 388 389
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
390
    std::vector<phi::DenseTensor>& in_tensors,
391 392
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
393
  PADDLE_ENFORCE_EQ(
394 395
      CheckTensorsInCudaPlace(in_tensors),
      true,
396 397
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

398
  return Collective(
399 400 401 402 403
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
404 405 406 407
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
408 409 410 411 412 413 414
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
415 416
      },
      CommType::BROADCAST);
417 418
}

B
Baibaifan 已提交
419 420
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
421 422
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
423

424
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
425 426 427 428 429
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
B
Baibaifan 已提交
430
    auto dt = full({1}, 0, phi::DataType::FLOAT32, place);
431 432
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
433
  }
434
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
435 436 437 438 439
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

440 441
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
442
  PADDLE_ENFORCE_EQ(
443 444
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
445 446
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
447 448
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
449 450 451 452 453 454
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
455 456
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
457 458 459
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

460
    const auto inserted = used_devices.insert(t.place()).second;
461 462
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
463 464 465 466 467 468
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
469
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
470 471
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

472 473
  auto task = PointToPoint(
      tensors,
474 475 476
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
477 478
          int dst_rank) {
        return platform::dynload::ncclSend(
479 480 481 482 483 484
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
485
      },
486 487
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
488 489 490 491
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
492
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
493 494
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

495 496
  auto task = PointToPoint(
      tensors,
497 498 499
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
500 501
          int src_rank) {
        return platform::dynload::ncclRecv(
502 503 504 505 506 507
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
508
      },
509 510
      src_rank,
      CommType::RECV);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

526 527
  auto task = PointToPoint(
      shared_tensors,
528 529 530
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
531 532
          int dst_rank) {
        return platform::dynload::ncclSend(
533 534 535 536 537 538
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
539
      },
540 541
      dst_rank,
      CommType::SEND);
542 543 544 545 546 547 548 549 550 551 552 553 554 555
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

556 557
  auto task = PointToPoint(
      shared_tensors,
558 559 560
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
561 562
          int src_rank) {
        return platform::dynload::ncclRecv(
563 564 565 566 567 568
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
569
      },
570 571
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
572 573 574
  return task;
}

575
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
576 577
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
578
  PADDLE_ENFORCE_EQ(
579 580
      CheckTensorsInCudaPlace(in_tensors),
      true,
581 582
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
583 584
      CheckTensorsInCudaPlace(out_tensors),
      true,
585
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
586
  return Collective(
587 588 589 590 591 592
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
593
        return platform::dynload::ncclAllGather(
594 595 596 597 598 599
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
600 601
      },
      CommType::ALLGATHER);
602 603
}

604 605
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
626
  return nullptr;
627 628 629
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
630 631
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
632
  PADDLE_ENFORCE_EQ(
633 634
      CheckTensorsInCudaPlace(in_tensors),
      true,
635 636
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
637 638
      CheckTensorsInCudaPlace(out_tensors),
      true,
639 640
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
641 642 643 644 645
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
646 647 648 649 650
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
651
              GetPointerByOffset(input.data(), offset, input.dtype()),
652 653 654 655 656
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
657
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
658
              GetPointerByOffset(output.data(), offset, input.dtype()),
659 660 661 662 663
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
664
          offset += input.numel() / size_;
665 666 667
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
      CommType::ALLTOALL);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(in_sizes, in_dims);
        CheckSplitSizes(out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
731 732 733
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
734
    std::vector<phi::DenseTensor>& in_tensors,
735 736
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
737
  PADDLE_ENFORCE_EQ(
738 739
      CheckTensorsInCudaPlace(in_tensors),
      true,
740 741
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
742 743 744 745 746 747
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
748
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
749 750 751
            input.data(),
            output.data(),
            input.numel(),
752
            platform::ToNCCLDataType(input.dtype()),
753 754 755 756
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
757 758 759 760 761
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
762
    std::vector<phi::DenseTensor>& in_tensors,
763 764
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
765
  PADDLE_ENFORCE_EQ(
766 767
      CheckTensorsInCudaPlace(in_tensors),
      true,
768 769
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
770 771
      CheckTensorsInCudaPlace(out_tensors),
      true,
772 773
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
774 775 776 777 778
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
779 780 781 782 783 784
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
785
                GetPointerByOffset(input.data(), offset, input.dtype()),
786 787 788 789 790
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
791
            offset += input.numel() / size_;
792 793
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
794 795 796 797 798
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
799 800 801 802
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
803 804 805 806 807
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
808 809 810 811 812 813
              stream));
        }
      },
      CommType::SCATTER);
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

866 867
}  //  namespace distributed
}  //  namespace paddle