ProcessGroupNCCL.cc 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
L
lilong12 已提交
16
#include "paddle/fluid/distributed/collective/Common.h"
17
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
18
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
19 20 21
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
38 39
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
40 41 42 43 44
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
45
    const std::vector<phi::DenseTensor>& inputs) {
46 47 48 49
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(places, rank, comm_type,
                                                      inputs);
}

50 51 52
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places, int rank, CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
53 54 55 56 57 58 59 60
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
61 62
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
92 93 94 95 96 97 98 99

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
    }
  }
100 101 102 103 104 105
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

106
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
107 108 109 110 111
                                   int rank, int size,
                                   const platform::Place& place, int gid)
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
112 113 114

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
115 116
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
117 118
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
119 120 121 122 123 124 125
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
126 127
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
128 129 130
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
150 151 152 153
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

154 155 156 157 158
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

159 160
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
187 188
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, Fn fn, CommType op_type) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
212
      memory::RecordStream(inputs[i].Holder(),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
                                  phi::DenseTensor* out, Fn fn,
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
270 271
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
272 273
    std::vector<phi::DenseTensor>& tensors, Fn fn, int dst_rank,
    CommType op_type) {
B
Baibaifan 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
296
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

317
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
318 319
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const AllreduceOptions& opts) {
320
  PADDLE_ENFORCE_EQ(
321
      CheckTensorsInCudaPlace(in_tensors), true,
322
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
323 324 325 326 327 328 329 330 331
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllReduce(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()),
                          ToNCCLRedType(opts.reduce_op), comm, stream);
                    },
                    CommType::ALLREDUCE);
332 333 334
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
335 336
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const BroadcastOptions& opts) {
337
  PADDLE_ENFORCE_EQ(
338
      CheckTensorsInCudaPlace(in_tensors), true,
339 340
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

341 342 343 344 345 346 347 348 349 350 351
  return Collective(in_tensors, out_tensors,
                    [&](phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      const auto root = opts.source_rank * in_tensors.size() +
                                        opts.source_root;
                      return platform::dynload::ncclBroadcast(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()), root, comm,
                          stream);
                    },
                    CommType::BROADCAST);
352 353
}

B
Baibaifan 已提交
354 355
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
356 357
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
358

359
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
360 361 362 363 364
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
B
Baibaifan 已提交
365
    auto dt = full({1}, 0, phi::DataType::FLOAT32, place);
366 367
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
368
  }
369
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
370 371 372 373 374
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

375 376
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
377 378 379 380 381 382 383 384 385 386 387
  PADDLE_ENFORCE_EQ(
      tensors.size() == 0, false,
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
      tensors.size(), num_devices,
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
388
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()), true,
B
Baibaifan 已提交
389 390 391
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

392
    const auto inserted = used_devices.insert(t.place()).second;
B
Baibaifan 已提交
393 394 395 396 397 398 399
    PADDLE_ENFORCE_EQ(inserted, true,
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
400
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
401 402
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

403 404 405 406 407 408 409 410 411
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& input, ncclComm_t comm,
                               const gpuStream_t& stream, int dst_rank) {
                             return platform::dynload::ncclSend(
                                 input.data(), input.numel(),
                                 platform::ToNCCLDataType(input.dtype()),
                                 dst_rank, comm, stream);
                           },
                           dst_rank, CommType::SEND);
B
Baibaifan 已提交
412 413 414 415
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
416
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
417 418
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

419 420 421 422 423 424 425 426 427
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& output, ncclComm_t comm,
                               const gpuStream_t& stream, int src_rank) {
                             return platform::dynload::ncclRecv(
                                 output.data(), output.numel(),
                                 platform::ToNCCLDataType(output.dtype()),
                                 src_rank, comm, stream);
                           },
                           src_rank, CommType::RECV);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

  auto task = PointToPoint(shared_tensors,
                           [&](phi::DenseTensor& input, ncclComm_t comm,
                               const gpuStream_t& stream, int dst_rank) {
                             return platform::dynload::ncclSend(
                                 input.data(), input.numel(),
                                 platform::ToNCCLDataType(input.dtype()),
                                 dst_rank, comm, stream);
                           },
                           dst_rank, CommType::SEND);
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

  auto task = PointToPoint(shared_tensors,
                           [&](phi::DenseTensor& output, ncclComm_t comm,
                               const gpuStream_t& stream, int src_rank) {
                             return platform::dynload::ncclRecv(
                                 output.data(), output.numel(),
                                 platform::ToNCCLDataType(output.dtype()),
                                 src_rank, comm, stream);
                           },
                           src_rank, CommType::RECV);
B
Baibaifan 已提交
475 476 477
  return task;
}

478
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
479 480
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
481 482 483 484 485 486
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
487 488 489 490 491 492 493 494 495
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllGather(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.dtype()), comm,
                          stream);
                    },
                    CommType::ALLGATHER);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

void* GetPointerByOffset(void* raw_pointer, size_t offset,
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
519
  return nullptr;
520 521 522
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
523 524
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
525 526 527 528 529 530 531 532
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
533
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
534 535 536 537 538
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
539 540 541
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
542
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
543 544 545 546
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
          offset += input.numel() / size_;
547 548 549 550 551 552 553
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
554 555
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ReduceOptions& opts) {
556
  PADDLE_ENFORCE_EQ(
557
      CheckTensorsInCudaPlace(in_tensors), true,
558 559
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
560 561 562
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
563
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
564 565
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()),
566 567 568 569 570 571
            ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream));
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
572 573
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
574 575 576 577 578 579 580 581
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
582
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
583 584 585 586 587 588
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
589 590 591 592
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_, platform::ToNCCLDataType(input.dtype()),
                i, comm, stream));
            offset += input.numel() / size_;
593 594
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
595 596
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
597 598 599 600
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
601 602
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
603 604 605 606 607 608
              stream));
        }
      },
      CommType::SCATTER);
}

609 610
}  //  namespace distributed
}  //  namespace paddle