ProcessGroupNCCL.cc 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20 21 22
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
39 40
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
41 42 43 44 45
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
46
    const std::vector<phi::DenseTensor>& inputs) {
47 48 49 50
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(places, rank, comm_type,
                                                      inputs);
}

51 52 53
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places, int rank, CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
54 55 56 57 58 59 60 61
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
62 63
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
93 94 95 96 97 98 99 100

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
    }
  }
101 102 103 104 105 106
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

107
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
108 109 110 111 112
                                   int rank, int size,
                                   const platform::Place& place, int gid)
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
113 114 115

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
116 117
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
118 119
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
120 121 122 123 124 125 126
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
127 128
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
129 130 131
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
151 152 153 154
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

155 156 157 158 159
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

160 161
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
188 189
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, Fn fn, CommType op_type) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
213
      memory::RecordStream(inputs[i].Holder(),
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
                                  phi::DenseTensor* out, Fn fn,
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
271 272
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
273 274
    std::vector<phi::DenseTensor>& tensors, Fn fn, int dst_rank,
    CommType op_type) {
B
Baibaifan 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
297
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

318
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
319 320
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const AllreduceOptions& opts) {
321
  PADDLE_ENFORCE_EQ(
322
      CheckTensorsInCudaPlace(in_tensors), true,
323
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
324 325 326 327 328 329 330 331 332 333
  return Collective(
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op), comm, stream);
      },
      CommType::ALLREDUCE);
334 335 336
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
337 338
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const BroadcastOptions& opts) {
339
  PADDLE_ENFORCE_EQ(
340
      CheckTensorsInCudaPlace(in_tensors), true,
341 342
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

343 344 345 346 347 348 349 350 351 352 353
  return Collective(
      in_tensors, out_tensors,
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.type()), root, comm, stream);
      },
      CommType::BROADCAST);
354 355
}

B
Baibaifan 已提交
356 357
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
358 359
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
360

361
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
362 363 364 365 366
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
B
Baibaifan 已提交
367
    auto dt = full({1}, 0, phi::DataType::FLOAT32, place);
368 369
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
370
  }
371
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
372 373 374 375 376
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

377 378
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
379 380 381 382 383 384 385 386 387 388 389
  PADDLE_ENFORCE_EQ(
      tensors.size() == 0, false,
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
      tensors.size(), num_devices,
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
390
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()), true,
B
Baibaifan 已提交
391 392 393
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

394
    const auto inserted = used_devices.insert(t.place()).second;
B
Baibaifan 已提交
395 396 397 398 399 400 401
    PADDLE_ENFORCE_EQ(inserted, true,
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
402
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
403 404
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

405 406 407 408 409 410 411 412 413
  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& input, ncclComm_t comm, const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()), dst_rank, comm, stream);
      },
      dst_rank, CommType::SEND);
B
Baibaifan 已提交
414 415 416 417
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
418
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
419 420
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

421 422 423 424 425 426 427 428 429
  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(), output.numel(),
            platform::ToNCCLDataType(output.dtype()), src_rank, comm, stream);
      },
      src_rank, CommType::RECV);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

445 446 447 448 449 450 451 452 453
  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input, ncclComm_t comm, const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()), dst_rank, comm, stream);
      },
      dst_rank, CommType::SEND);
454 455 456 457 458 459 460 461 462 463 464 465 466 467
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

468 469 470 471 472 473 474 475 476
  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(), output.numel(),
            platform::ToNCCLDataType(output.dtype()), src_rank, comm, stream);
      },
      src_rank, CommType::RECV);
B
Baibaifan 已提交
477 478 479
  return task;
}

480
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
481 482
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
483 484 485 486 487 488
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
489 490 491 492 493 494 495 496 497
  return Collective(
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()), comm, stream);
      },
      CommType::ALLGATHER);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
}

void* GetPointerByOffset(void* raw_pointer, size_t offset,
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
521
  return nullptr;
522 523 524
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
525 526
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
527 528 529 530 531 532 533 534
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
535
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
536 537 538 539 540
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
541 542 543
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
544
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
545 546 547 548
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
          offset += input.numel() / size_;
549 550 551 552 553 554 555
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
556 557
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ReduceOptions& opts) {
558
  PADDLE_ENFORCE_EQ(
559
      CheckTensorsInCudaPlace(in_tensors), true,
560 561
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
562 563 564
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
565
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
566 567
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()),
568 569 570 571 572 573
            ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream));
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
574 575
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
576 577 578 579 580 581 582 583
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
584
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
585 586 587 588 589 590
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
591 592 593 594
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_, platform::ToNCCLDataType(input.dtype()),
                i, comm, stream));
            offset += input.numel() / size_;
595 596
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
597 598
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
599 600 601 602
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
603 604
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
605 606 607 608 609 610
              stream));
        }
      },
      CommType::SCATTER);
}

611 612
}  //  namespace distributed
}  //  namespace paddle