ProcessGroupNCCL.cc 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
17 18 19
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

static ncclRedOp_t ToNCCLRedType(ReduceOp reduction) {
  static const std::map<ReduceOp, ncclRedOp_t> red_type = {
      {ReduceOp::MIN, ncclMin},
      {ReduceOp::MAX, ncclMax},
      {ReduceOp::SUM, ncclSum},
      {ReduceOp::PRODUCT, ncclProd},
  };
  auto it = red_type.find(reduction);
  PADDLE_ENFORCE_EQ(it != red_type.end(), true,
                    platform::errors::InvalidArgument(
                        "Invalid nccl reduction. Must be ncclMin | ncclMax | "
                        "ncclProd | ncclSum"));
  return it->second;
}

std::string SerializeNCCLUniqueId(const ncclUniqueId& ncclID) {
  const uint8_t* bytes = reinterpret_cast<const uint8_t*>(&ncclID);
  std::ostringstream oss;
  for (auto i = 0; i < NCCL_UNIQUE_ID_BYTES; ++i) {
    oss << std::hex << static_cast<int>(bytes[i]);
  }
  return oss.str();
}

// Get the list of devices from list of tensors
std::vector<Place> GetPlaceList(const std::vector<Tensor>& tensors) {
  std::vector<Place> places;
  places.reserve(tensors.size());
  for (auto& tensor : tensors) {
    places.push_back(tensor.inner_place());
  }
  return places;
}

// Get the deviceList String from the list of devices
std::string GetKeyFromPlaces(const std::vector<Place>& places) {
  std::string placeList;
  for (auto& place : places) {
    std::stringstream tmp;
    tmp << place;
    if (placeList.empty()) {
      placeList += tmp.str();
    } else {
      placeList += "," + tmp.str();
    }
  }
  return placeList;
}

bool CheckTensorsInCudaPlace(const std::vector<Tensor>& tensors) {
  return std::all_of(tensors.cbegin(), tensors.cend(), [&](const Tensor& t) {
    return t.place() == PlaceType::kGPU;
  });
}

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
    ncclEvents[i].Record(*dev_ctx[i]);
    ncclEvents[i].Block(*default_ctx);
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
    const std::vector<Tensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(places, rank, comm_type,
                                                      inputs);
}

ProcessGroupNCCL::NCCLTask::NCCLTask(const std::vector<Place>& places, int rank,
                                     CommType CommType,
                                     const std::vector<Tensor>& inputs)
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
    std::vector<Tensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<Tensor>>(outputs);
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
145 146 147 148 149 150 151 152

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
    }
  }
153 154 155 156 157 158
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

159
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
160
                                   int rank, int size)
161
    : ProcessGroup(rank, size), store_(store) {}
162 163 164

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
165 166 167 168 169 170 171 172 173 174 175 176 177 178
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(i);
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(i);
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
198 199 200 201
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

202 203 204 205 206
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

207 208
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<Tensor>& inputs, std::vector<Tensor>& outputs, Fn fn,
    CommType op_type) {
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl());
      memory::RecordStream(dense_tensor->Holder(),
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

B
Baibaifan 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<Tensor>& tensors, Fn fn, int dst_rank, CommType op_type) {
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
      memory::RecordStream(dense_tensor->Holder(),
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    std::vector<Tensor>& tensors, const AllreduceOptions& opts) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      tensors, tensors,
      [&](const Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        return platform::dynload::ncclAllReduce(
            input_tensor->data(), output_tensor->data(), input_tensor->numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op), comm, stream);
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    std::vector<Tensor>& tensors, const BroadcastOptions& opts) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

  return Collective(
      tensors, tensors,
      [&](Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        const auto root = opts.source_rank * tensors.size() + opts.source_root;
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        return platform::dynload::ncclBcast(
            input_tensor->data(), input_tensor->numel(),
            platform::ToNCCLDataType(input.type()), root, comm, stream);
      },
      CommType::BROADCAST);
}

B
Baibaifan 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
  std::vector<phi::GPUPlace> places;

  if (!opts.place_ids.empty()) {
    for (auto place_id : opts.place_ids) {
      places.emplace_back(place_id);
    }
  } else if (!used_place_ids_.empty()) {
    for (auto place_id : used_place_ids_) {
      places.emplace_back(place_id);
    }
  } else {
    auto numGPUs = GetSize();
    int place_id = static_cast<int>(rank_ % numGPUs);
    places.emplace_back(place_id);
  }

  std::vector<Tensor> barrierTensors;
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
    auto dt = full({1}, 0, phi::DataType::FLOAT32, phi::Backend::GPU);
    barrierTensors.push_back(dt);
  }
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors);
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

void CheckTensorsInDifferentDevices(const std::vector<Tensor>& tensors,
                                    const size_t num_devices) {
  PADDLE_ENFORCE_EQ(
      tensors.size() == 0, false,
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
      tensors.size(), num_devices,
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
    PADDLE_ENFORCE_EQ(t.is_cuda() && t.is_dense_tensor(), true,
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

    const auto inserted = used_devices.insert(t.inner_place()).second;
    PADDLE_ENFORCE_EQ(inserted, true,
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    std::vector<Tensor>& tensors, int dst_rank) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](Tensor& input, ncclComm_t comm, const gpuStream_t& stream,
          int dst_rank) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        return platform::dynload::ncclSend(
            input_tensor->data(), input_tensor->numel(),
            platform::ToNCCLDataType(input.type()), dst_rank, comm, stream);
      },
      dst_rank, CommType::SEND);
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    std::vector<Tensor>& tensors, int src_rank) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](Tensor& output, ncclComm_t comm, const gpuStream_t& stream,
          int src_rank) {
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        return platform::dynload::ncclRecv(
            output_tensor->data(), output_tensor->numel(),
            platform::ToNCCLDataType(output.type()), src_rank, comm, stream);
      },
      src_rank, CommType::RECV);
  return task;
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    std::vector<Tensor>& in_tensors, std::vector<Tensor>& out_tensors) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
      [&](const Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        return platform::dynload::ncclAllGather(
            input_tensor->data(), output_tensor->data(), input_tensor->numel(),
            platform::ToNCCLDataType(input.type()), comm, stream);
      },
      CommType::ALLGATHER);
}

void* GetPointerByOffset(void* raw_pointer, size_t offset,
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<Tensor>& in_tensors, std::vector<Tensor>& out_tensors) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
      [&](const Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input_tensor->data(), offset, input.type()),
              input_tensor->numel() / size_,
              platform::ToNCCLDataType(input.type()), i, comm, stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output_tensor->data(), offset, input.type()),
              input_tensor->numel() / size_,
              platform::ToNCCLDataType(input.type()), i, comm, stream));
          offset += input_tensor->numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<Tensor>& tensors, const ReduceOptions& opts) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      tensors, tensors,
      [&](const Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input_tensor->data(), output_tensor->data(), input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream));
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<Tensor>& in_tensors, std::vector<Tensor>& out_tensors,
    const ScatterOptions& opts) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
      [&](const Tensor& input, Tensor& output, ncclComm_t comm,
          const gpuStream_t& stream) {
        auto input_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(input.impl());
        auto output_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(output.impl());
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input_tensor->data(), offset, input.type()),
                input_tensor->numel() / size_,
                platform::ToNCCLDataType(input.type()), i, comm, stream));
            offset += input_tensor->numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output_tensor->data(), input_tensor->numel() / size_,
              platform::ToNCCLDataType(input.type()), opts.root_rank, comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output_tensor->data(), input_tensor->numel() / size_,
              platform::ToNCCLDataType(input.type()), opts.root_rank, comm,
              stream));
        }
      },
      CommType::SCATTER);
}

610 611
}  //  namespace distributed
}  //  namespace paddle