parallel.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26 27 28

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
29
from paddle.distributed.fleet.launch_utils import check_backend
30
from paddle.fluid.dygraph.parallel import ParallelEnv
31
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
32

33
__all__ = []
34 35 36

ParallelStrategy = core.ParallelStrategy

37 38 39 40 41 42 43 44 45 46 47
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

48

49
def _start_kv_server(port, http_server_d, size):
50
    from paddle.distributed.fleet.utils.http_server import KVServer
51
    http_server = KVServer(int(port), size=size)
52
    http_server.start()
53
    wait_seconds = 3
L
lilong12 已提交
54
    while http_server_d.get("running", False) or not http_server.should_stop():
55 56 57 58
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
59 60
def _is_cpuonly(backend):
    check_backend(backend)
61 62 63 64 65 66 67 68
    if backend in ['auto', 'nccl', 'bkcl'] and (core.is_compiled_with_cuda() or
                                                core.is_compiled_with_xpu()):
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


X
xiongkun 已提交
69
def init_parallel_env():
70
    """
71
    Initialize parallel training environment in dynamic graph mode.
72

73
    .. note::
74
        Now initialize both `NCCL` and `GLOO` contexts for communication.
75

76 77 78 79 80
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

81 82 83 84 85
    Returns:
        None
        
    Examples:
        .. code-block:: python
86
            # required: gpu
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
102
                # 1. initialize parallel environment
103 104
                dist.init_parallel_env()

105
                # 2. create data parallel layer & optimizer
106 107 108 109 110 111 112
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

113
                # 3. run layer
114 115 116 117 118 119 120 121 122 123 124 125 126 127
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

128 129 130 131 132 133 134 135 136 137 138
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
139 140
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to 
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
141 142
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
143 144 145
    # 1. gpu xpu check, must be gpu or xpu, 
    if not (is_cpu_only or core.is_compiled_with_cuda() or
            core.is_compiled_with_xpu()):
146
        raise NotImplementedError(
147
            "If you want to use CPU-only version, please use 'gloo' as backend")
148 149 150 151 152 153 154 155 156

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

157
    if not is_cpu_only and core.is_compiled_with_cuda():
158
        _check_var_exists("FLAGS_selected_gpus")
159
    elif not is_cpu_only and core.is_compiled_with_xpu():
160 161
        _check_var_exists('FLAGS_selected_xpus')

162 163 164 165 166
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

167
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
168
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
169
    if is_cpu_only or init_gloo:
L
lilong12 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
184 185

    # 4. init NCCL ParallelStrategy
186
    strategy = ParallelStrategy()
187 188
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
189 190 191 192
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
193
    strategy.nrings = parallel_env.nrings
194

195
    # NOTE(chenweihang): [ why config global place here? ]
196
    # the dygraph mode will be set to default mode,
197 198 199 200
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
201 202 203
    if is_cpu_only:
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
204 205 206
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
207

208
    _set_expected_place(place)
209
    # init nccl or bkcl context
210 211 212 213
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
    elif core.is_compiled_with_cuda():
214 215 216 217 218
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
219 220 221

    other_endpoints = strategy.trainer_endpoints[:]
    other_endpoints.remove(strategy.current_endpoint)
222
    if not is_cpu_only and strategy.local_rank == 0:
223 224
        wait_server_ready(other_endpoints)

225
    parallel_helper._init_parallel_ctx()
226 227 228 229
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
230 231 232 233 234
    if is_cpu_only and parallel_env.rank == 0:
        # compare to init_gloo, we don't need to 
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
235

236 237
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
274
    return _get_global_parallel_env().rank
275 276 277 278


def get_world_size():
    """
279
    Returns the number of trainers (number of processes participating in current job).
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
297
    return _get_global_parallel_env().world_size