parallel.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26 27 28 29

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
30
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
31

32
__all__ = []
33 34 35

ParallelStrategy = core.ParallelStrategy

36 37 38 39 40 41 42 43 44 45 46
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

47

48
def _start_kv_server(port, http_server_d, size):
49
    from paddle.distributed.fleet.utils.http_server import KVServer
50
    http_server = KVServer(int(port), size=size)
51
    http_server.start()
52
    wait_seconds = 3
L
lilong12 已提交
53
    while http_server_d.get("running", False) or not http_server.should_stop():
54 55 56 57
        time.sleep(wait_seconds)
    http_server.stop()


58
def init_parallel_env():
59
    """
60
    Initialize parallel training environment in dynamic graph mode.
61

62
    .. note::
63
        Now initialize both `NCCL` and `GLOO` contexts for communication.
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
86
                # 1. initialize parallel environment
87 88
                dist.init_parallel_env()

89
                # 2. create data parallel layer & optimizer
90 91 92 93 94 95 96
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

97
                # 3. run layer
98 99 100 101 102 103 104 105 106 107 108 109 110 111
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

112 113 114 115 116 117 118 119 120 121 122 123
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return

124 125
    # 1. gpu xpu check, must be gpu or xpu
    if not core.is_compiled_with_cuda() and not core.is_compiled_with_xpu():
126 127
        raise NotImplementedError(
            "Cannot initialize parallel environment in CPU-only version, now only "
128 129
            "supports initializing the GPU and XPU parallel environment. Please recompile "
            "or reinstall paddle with GPU or XPU support.")
130 131 132 133 134 135 136 137 138

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

139 140 141 142 143
    if core.is_compiled_with_cuda():
        _check_var_exists("FLAGS_selected_gpus")
    elif core.is_compiled_with_xpu():
        _check_var_exists('FLAGS_selected_xpus')

144 145 146 147 148
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

149
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
    if init_gloo:
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
166 167

    # 4. init NCCL ParallelStrategy
168
    strategy = ParallelStrategy()
169 170
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
171 172 173 174
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
175
    strategy.nrings = parallel_env.nrings
176

177
    # NOTE(chenweihang): [ why config global place here? ]
178
    # the dygraph mode will be set to default mode,
179 180 181 182
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
183 184 185 186
    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
187 188
    _set_expected_place(place)

189 190 191 192 193 194 195
    # init nccl or bkcl context
    if core.is_compiled_with_cuda():
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
196 197 198 199 200 201

    other_endpoints = strategy.trainer_endpoints[:]
    other_endpoints.remove(strategy.current_endpoint)
    if strategy.local_rank == 0:
        wait_server_ready(other_endpoints)

202
    parallel_helper._init_parallel_ctx()
203

204 205 206 207
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
L
lilong12 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    if init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])

        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
247
    return _get_global_parallel_env().rank
248 249 250 251


def get_world_size():
    """
252
    Returns the number of trainers (number of processes participating in current job).
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
270
    return _get_global_parallel_env().world_size