parallel.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv

__all__ = ["init_parallel_env"]

ParallelStrategy = core.ParallelStrategy


32
def init_parallel_env():
33
    """
34
    Initialize parallel training environment in dynamic graph mode.
35

36 37 38
    .. note::
        Now only supports initializing the GPU parallel training 
        environment and using NCCL for communication.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()
                
                # 2. initialize parallel environment
                dist.init_parallel_env()

                # 3. create data parallel layer & optimizer
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

                # 4. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

92 93 94 95 96 97
    # 1. gpu check
    if not core.is_compiled_with_cuda():
        raise NotImplementedError(
            "Cannot initialize parallel environment in CPU-only version, now only "
            "supports initializing the GPU parallel environment. Please recompile "
            "or reinstall paddle with GPU support.")
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

    _check_var_exists("FLAGS_selected_gpus")
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

113
    # 3. init NCCL ParallelStrategy
114
    strategy = ParallelStrategy()
115 116 117 118 119 120
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
    strategy.nranks = ParallelEnv().world_size
    strategy.local_rank = ParallelEnv().rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
121 122
    if strategy.nranks < 2:
        return
123 124 125 126 127 128 129 130 131 132 133 134
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode, 
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
    place = core.CUDAPlace(ParallelEnv().device_id)
    _set_expected_place(place)

    # init nccl context
    parallel_helper._set_parallel_ctx(core.NCCLParallelContext(strategy, place))
    parallel_helper._init_parallel_ctx()
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161


def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
    return ParallelEnv().rank


def get_world_size():
    """
162
    Returns the number of trainers (number of processes participating in current job).
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
    return ParallelEnv().world_size