parallel.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19 20
from multiprocessing import Process, Manager
import time
import sys
21 22 23 24 25 26 27 28

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
29
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
30 31 32 33 34 35

__all__ = ["init_parallel_env"]

ParallelStrategy = core.ParallelStrategy


36 37 38 39 40 41 42 43 44 45
def _start_kv_server(port, http_server_d):
    from paddle.distributed.fleet.utils.http_server import KVServer
    http_server = KVServer(int(port))
    http_server.start()
    wait_seconds = 5
    while http_server_d.get("running", False):
        time.sleep(wait_seconds)
    http_server.stop()


46
def init_parallel_env():
47
    """
48
    Initialize parallel training environment in dynamic graph mode.
49

50 51 52
    .. note::
        Now only supports initializing the GPU parallel training 
        environment and using NCCL for communication.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()
                
                # 2. initialize parallel environment
                dist.init_parallel_env()

                # 3. create data parallel layer & optimizer
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

                # 4. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

104 105 106 107 108 109
    # 1. gpu check
    if not core.is_compiled_with_cuda():
        raise NotImplementedError(
            "Cannot initialize parallel environment in CPU-only version, now only "
            "supports initializing the GPU parallel environment. Please recompile "
            "or reinstall paddle with GPU support.")
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

    _check_var_exists("FLAGS_selected_gpus")
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    if ParallelEnv().world_size < 2:
        return

    # 3: init gloo context
    ep_rank_0 = ParallelEnv().trainer_endpoints[0].split(":")
    ep_rank = ParallelEnv().trainer_endpoints[ParallelEnv().rank].split(":")
    manager = Manager()
    # glboal dict to store status
    http_server_d = manager.dict()
    http_server_d["running"] = False
    if ParallelEnv().rank == 0:
        http_server = Process(
            target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d))
        http_server.daemon = True
        http_server_d["running"] = True
        http_server.start()
    wait_server_ready([ParallelEnv().trainer_endpoints[0]])

    gloo_strategy = core.GlooParallelStrategy()
    gloo_strategy.rank = ParallelEnv().rank
    gloo_strategy.rank_num = ParallelEnv().world_size
    gloo_strategy.ip_address = ep_rank_0[0]
    gloo_strategy.ip_port = int(ep_rank_0[1])
    default_init_timeout_seconds = 3600
    default_run_timeout_seconds = 9999999
    gloo_strategy.init_seconds = default_init_timeout_seconds
    gloo_strategy.run_seconds = default_run_timeout_seconds
    gloo = core.GlooParallelContext(gloo_strategy)
    gloo.init()
    if ParallelEnv().rank == 0:
        http_server_d["running"] = False
        http_server.join()

    # 4. init NCCL ParallelStrategy
159
    strategy = ParallelStrategy()
160 161 162 163 164 165
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
    strategy.nranks = ParallelEnv().world_size
    strategy.local_rank = ParallelEnv().rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
166

167 168 169 170 171 172 173 174 175 176 177 178
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode, 
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
    place = core.CUDAPlace(ParallelEnv().device_id)
    _set_expected_place(place)

    # init nccl context
    parallel_helper._set_parallel_ctx(core.NCCLParallelContext(strategy, place))
    parallel_helper._init_parallel_ctx()
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205


def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
    return ParallelEnv().rank


def get_world_size():
    """
206
    Returns the number of trainers (number of processes participating in current job).
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
    return ParallelEnv().world_size