tensor.py 81.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21 22
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..framework import Variable, in_dygraph_mode
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'full_like',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'kron',
    'arange',
    'full',
    'tril',
    'triu',
64
    'trace',
Y
Yu Yang 已提交
65 66 67
]


X
xuwei06 已提交
68
def create_tensor(dtype, name=None, persistable=False):
69
    """
W
wangchaochaohu 已提交
70
    Create a variable, which will hold a Tensor with data type dtype.
71 72

    Args:
W
wangchaochaohu 已提交
73 74 75 76
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
77
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
78
            default value is False.
79 80

    Returns:
W
wangchaochaohu 已提交
81
        Variable: The tensor to be created according to dtype.
82 83 84 85

    Examples:
        .. code-block:: python

86
          import paddle.fluid as fluid
87 88
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
89 90 91 92
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
93
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
94 95
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
106 107 108 109 110
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

111 112 113 114 115 116 117
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
118 119 120
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
121
        default_initializer (Initializer, optional): Initializer for the parameter
122 123

    Returns:
124
        The created parameter.
Y
yuyang18 已提交
125 126

    Examples:
127 128
        .. code-block:: python

129
            import paddle.fluid as fluid
130 131
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
132
    """
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
152
    helper = LayerHelper("create_parameter", **locals())
153
    if attr is None:
X
xuwei06 已提交
154
        attr = ParamAttr(name=name)
155 156
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
157 158 159
                                   default_initializer)


160 161 162 163 164 165 166
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
167
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
168

169 170 171
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
172
                      variable will be filled with it.
173 174
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
175
                           Default: False
176
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
177
                         Default: False
178 179
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
180 181

    Returns:
182
        Variable: The created Variable
F
fengjiayi 已提交
183 184 185 186

    Examples:
        .. code-block:: python

187
            import paddle.fluid as fluid
188 189
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
190
                                           persistable=True, force_cpu=True, name='new_var')
191
    """
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
209 210
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
211 212 213 214 215
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
216 217 218
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
219

Q
Qiao Longfei 已提交
220 221 222
    return var


223
def cast(x, dtype):
Y
Yu Yang 已提交
224
    """
225 226 227
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230 231 232
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle.fluid as fluid
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
264
    """
265 266
    check_variable_and_dtype(
        x, 'x',
267 268
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
269 270 271 272 273 274
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
275
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
276 277 278 279 280 281 282 283 284
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


285
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
286
    """
287 288
    **Concat**

289
    This OP concatenates the input along the axis.
290 291

    Args:
292 293
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
294
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
295 296 297 298 299
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
300 301

    Returns:
302
        Variable: A Tensor with the same data type as input's.
303 304 305

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
306

307
            import paddle.fluid as fluid
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
330
    """
331 332

    if in_dygraph_mode():
S
songyouwei 已提交
333 334 335 336 337
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
338
        return core.ops.concat(input, 'axis', axis)
339

340 341 342 343 344
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
345
    for id, x in enumerate(input):
346 347
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
348 349
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
350

351
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
352
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
376 377 378
    return out


G
Guo Sheng 已提交
379
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
380
    """
G
Guo Sheng 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
431 432

    Args:
G
Guo Sheng 已提交
433 434 435 436 437 438 439
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
440 441

    Returns:
G
Guo Sheng 已提交
442 443 444
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
445 446 447 448

    Examples:
        .. code-block:: python

449
            import paddle.fluid as fluid
450
            import numpy as np
G
Guo Sheng 已提交
451 452 453 454 455 456 457
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
458
    """
459 460 461 462 463 464 465 466 467 468 469
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

470 471 472 473 474
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
475
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
476 477 478
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
479
        type='tensor_array_to_tensor',
L
li099 已提交
480 481 482
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
483 484
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
485 486 487
    return out, out_index


488
def sums(input, out=None):
F
fengjiayi 已提交
489
    """
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
511 512

    Args:
513 514 515 516
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
517 518

    Returns:
519 520
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
521 522

    Examples:
F
fengjiayi 已提交
523
        .. code-block:: python
K
kavyasrinet 已提交
524

525 526 527 528 529 530 531 532 533
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
534

535 536
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
537
    """
538 539 540 541 542 543 544 545 546
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
547 548
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
549 550
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
551 552 553 554
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
555 556 557 558 559
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
560 561 562
    return out


F
fengjiayi 已提交
563
def assign(input, output=None):
564
    """
565
    The OP copies the :attr:`input` to the :attr:`output`.
566

567 568 569 570 571
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
572 573

    Returns:
574
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
575 576 577

    Examples:
        .. code-block:: python
578

579
          import paddle.fluid as fluid
580 581 582 583 584 585
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
586
    """
Y
Yu Yang 已提交
587
    helper = LayerHelper('assign', **locals())
588
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
589
    if isinstance(input, Variable):
590 591 592
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
593 594 595
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
596
        helper.append_op(
R
robot 已提交
597
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
598 599
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
600 601 602 603
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
604
            value_name = "fp32_values"
605
            values = [float(v) for v in input.flat]
606
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
607
            value_name = "int32_values"
608
            values = [int(v) for v in input.flat]
609 610 611
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
612
        else:
613 614
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
615
                "the data type of 'input' must be bool, float32, int32 or int64, but "
616
                "received %s." % convert_dtype(dtype))
617 618 619
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
620 621 622
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
623 624 625 626 627 628
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
629
                value_name: values
X
xuwei06 已提交
630 631
            })

Y
Yu Yang 已提交
632 633 634
    return output


Q
QI JUN 已提交
635
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
636
    """
W
wangchaochaohu 已提交
637
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
638
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
639

T
tianshuo78520a 已提交
640
    The attribute `stop_gradient` of the created Tensor is set to True.
641 642

    Args:
643 644 645 646
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
647 648
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
649 650 651
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
652 653 654
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
655 656

    Returns:
W
wangchaochaohu 已提交
657 658 659 660 661
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
662 663 664 665

    Examples:
        .. code-block:: python

666
          import paddle.fluid as fluid
667 668 669
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
670
          # data1=[[5], [5]] data2=[[5], [5]]
671 672 673 674 675 676 677 678

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
679 680 681 682
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
683
    """
W
wangchaochaohu 已提交
684 685 686 687
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
688
    else:
W
wangchaochaohu 已提交
689 690 691 692 693
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
694 695 696

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
697 698 699
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
700
        else:
S
songyouwei 已提交
701
            shape = list(shape.numpy().astype(int))
702 703
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
704 705 706 707 708 709 710

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

711 712
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
713 714
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
715 716 717
        out.stop_gradient = True
        return out

718
    check_dtype(dtype, 'dtype',
719 720 721
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
722 723 724 725 726 727 728 729
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
730 731 732 733 734 735
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
736

Y
Yu Yang 已提交
737
    if out is None:
X
Xin Pan 已提交
738
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
739
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
740 741
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
742
        inputs=inputs,
Y
Yu Yang 已提交
743
        outputs={'Out': [out]},
L
liym27 已提交
744
        attrs=attrs,
M
minqiyang 已提交
745
        stop_gradient=True)
Y
Yu Yang 已提交
746 747 748 749
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
750
@templatedoc()
Y
Yu Yang 已提交
751 752 753 754 755
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
756 757
                                  output_dim_idx=0,
                                  force_cpu=False):
758
    """
T
tianshuo78520a 已提交
759
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
760 761 762 763
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
764 765

    Args:
W
wangchaochaohu 已提交
766 767 768 769 770 771 772 773 774 775 776
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
777
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
778 779

    Returns:
W
wangchaochaohu 已提交
780
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
781 782 783 784 785

    Examples:

        .. code-block:: python

786
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
787
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
788
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
789
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
790

791
    """
Y
Yu Yang 已提交
792
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
793
    out = helper.create_variable_for_type_inference(dtype=dtype)
794 795 796 797 798 799
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
800
        'force_cpu': force_cpu
801 802 803 804 805
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
806 807 808 809
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
810
        attrs=attrs)
Y
Yu Yang 已提交
811 812 813 814
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
815 816 817 818
def argmin(x, axis=0):
    """
    **argmin**

819 820
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
821 822

    Args:
823 824 825 826 827
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
828

S
sneaxiy 已提交
829
    Returns:
830
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
831

S
sneaxiy 已提交
832 833
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
834

835
            import paddle.fluid as fluid
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
863
    """
864 865 866
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
867
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
868
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
869 870 871 872 873
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
874
    out.stop_gradient = True
S
sneaxiy 已提交
875 876 877 878 879 880 881
    return out


def argmax(x, axis=0):
    """
    **argmax**

882 883
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
884 885

    Args:
886 887 888 889 890
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
891

S
sneaxiy 已提交
892
    Returns:
893
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
894

S
sneaxiy 已提交
895 896
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
897

898
            import paddle.fluid as fluid
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
926
    """
927 928 929
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
930
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
931
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
932 933 934 935 936
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
937
    out.stop_gradient = True
S
sneaxiy 已提交
938 939 940
    return out


941
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
942
    """
943 944 945
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
946 947

    Args:
948 949 950 951 952
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
953 954 955
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
956 957 958
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
959 960

    Returns:
961 962 963
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
964 965 966 967

    Examples:
        .. code-block:: python

968
            import paddle.fluid as fluid
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1010
    """
1011 1012 1013
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1014
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1015 1016 1017 1018
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1019 1020 1021 1022
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1023
                 'Indices': ids},
1024 1025
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1026 1027 1028
    return out, ids


Y
Yang Yu 已提交
1029
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1030
    """
1031 1032
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1033

1034 1035 1036 1037 1038 1039 1040
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1041 1042

    Returns:
1043
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1044 1045 1046 1047

    Examples:
        .. code-block:: python

1048
          import paddle.fluid as fluid
1049
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1050
    """
1051 1052 1053 1054
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1055 1056
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1057 1058 1059
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1060
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1061
    """
1062 1063
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1064

1065 1066 1067 1068 1069 1070 1071
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1072 1073

    Returns:
1074
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1075 1076 1077 1078

    Examples:
        .. code-block:: python

1079
          import paddle.fluid as fluid
1080
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1081
    """
1082
    check_type(shape, 'shape', (list, tuple), 'zeros')
1083 1084 1085
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1086
    return fill_constant(value=0.0, **locals())
1087 1088


F
fengjiayi 已提交
1089 1090
def reverse(x, axis):
    """
1091
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1092

1093 1094 1095 1096 1097
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1098 1099

    Returns:
1100
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1101 1102 1103 1104

    Examples:
        .. code-block:: python

1105
          import paddle.fluid as fluid
1106 1107 1108 1109
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1110
    """
1111 1112 1113
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1114 1115 1116
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1117
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1118 1119
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1120
        inputs={'X': x},
F
fengjiayi 已提交
1121 1122 1123 1124 1125
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1126 1127 1128 1129 1130 1131 1132
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1133 1134 1135
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1151 1152
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1153
        file_path(str): The file path where variables will be saved.
1154
        overwrite(bool): Whether or not cover the given file when it has already
1155 1156
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1157 1158 1159 1160 1161 1162 1163 1164

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1165
            import paddle.fluid as fluid
1166 1167 1168 1169 1170 1171 1172
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1185
    Loads a list of variable from a single file.
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1197 1198 1199 1200 1201 1202 1203


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1204
       x (Variable): The Tensor/LoDTensor to be checked.
1205 1206

    Returns:
L
liu zhengxi 已提交
1207
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1208 1209 1210 1211 1212 1213 1214 1215
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1216
    """
1217
    check_type(x, 'x', (Variable), 'has_inf')
1218
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1219
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1220 1221 1222 1223 1224 1225 1226 1227 1228
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1229
       x (Variable): The Tensor/LoDTensor to be checked.
1230 1231

    Returns:
L
liu zhengxi 已提交
1232
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1233 1234 1235 1236 1237 1238 1239 1240
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1241
    """
1242
    check_type(x, 'x', (Variable), 'has_nan')
1243
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1244
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1259 1260 1261 1262 1263

    Examples:

        .. code-block:: python

1264
            import paddle.fluid as fluid
1265 1266 1267
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1268
            out = fluid.layers.isfinite(var)
1269
    """
1270 1271
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1272
    helper = LayerHelper("isfinite", **locals())
1273

1274
    out = helper.create_variable_for_type_inference(dtype='bool')
1275 1276
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1286 1287 1288 1289
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1290
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1291 1292 1293
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1294
                                  distance between two adjacent values, out[i+1] - out[i].
1295
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1296

L
Liufang Sang 已提交
1297 1298 1299
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1300 1301 1302 1303 1304

    examples:

        .. code-block:: python

1305
             import paddle.fluid as fluid
W
whs 已提交
1306 1307 1308
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
1309 1310 1311
    check_type(start, 'start', (float, int, Variable), 'range')
    check_type(end, 'end', (float, int, Variable), 'range')
    check_type(step, 'step', (float, int, Variable), 'range')
W
whs 已提交
1312 1313
    helper = LayerHelper("range", **locals())

1314 1315 1316 1317
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1318 1319
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1320 1321 1322 1323 1324
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1325 1326
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1327 1328 1329
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1330 1331
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1332 1333
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1343
    out.stop_gradient = True
W
whs 已提交
1344
    return out
Z
zhoukunsheng 已提交
1345 1346


Z
zhoukunsheng 已提交
1347 1348
def linspace(start, stop, num, dtype):
    """
1349
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1350 1351

    Args:
1352 1353 1354 1355 1356 1357 1358
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1359 1360

    Returns:
1361 1362 1363
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1364

Z
zhoukunsheng 已提交
1365
    Examples:
Z
zhoukunsheng 已提交
1366 1367
        .. code-block:: python

1368
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1369 1370
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1371 1372 1373 1374

    """
    helper = LayerHelper("linspace", **locals())

1375 1376 1377 1378
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1379 1380
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1381 1382 1383 1384
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1385 1386
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1387 1388 1389
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1390 1391
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1392 1393
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1404 1405


1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
def full_like(input,
              fill_value,
              out=None,
              dtype=None,
              device=None,
              stop_gradient=True,
              name=None):
    """
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Default value is 0. Note: this value shouldn't exceed the range of the output data type.
        out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. If out is None, a new Varibale will be create to store the result. Default value is None.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The default value is None, which means the output data type is the same as input.
        device (string, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be the device that the user set in the paddle program. Default value is None.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable. Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
    Returns:
        out(Variable): The Tensor variable storing the output.
    
    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np
          input = fluid.data(name='input', dtype='float32', shape=[2, 3])
          output = fluid.layers.full_like(input, 2.0)
          exe = fluid.Executor(fluid.CPUPlace())
          exe.run(fluid.default_startup_program())
          img=np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
          res = exe.run(fluid.default_main_program(), feed={'input':img}, fetch_list=[output])
          print(res) # [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
    """
    helper = LayerHelper("full_like", **locals())

    var_dtype = None
    if dtype is None:
        var_dtype = input.dtype
    else:
        check_dtype(
            dtype, 'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'full_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)

    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs={'value': fill_value,
               "dtype": var_dtype},
        outputs={'Out': [out]})
    out.stop_gradient = stop_gradient

    return out


Z
zhoukunsheng 已提交
1470 1471
def zeros_like(x, out=None):
    """
1472
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1473 1474 1475
    with `x`.

    Args:
1476 1477 1478
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1479
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1480 1481

    Returns:
1482 1483
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1484 1485 1486 1487

    Examples:
        .. code-block:: python

1488
          import paddle.fluid as fluid
1489
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1490 1491
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1492 1493
    """

1494 1495
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1496 1497 1498
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1499 1500 1501 1502 1503
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1504 1505 1506 1507
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1508 1509 1510 1511


def diag(diagonal):
    """
1512
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1513 1514

    Args:
1515 1516
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1517 1518

    Returns:
1519 1520
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1521 1522 1523 1524 1525 1526 1527

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1528 1529 1530

          import paddle.fluid as fluid
          import numpy as np
1531 1532 1533
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1534 1535

    """
1536 1537 1538
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1551 1552


1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1565 1566
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1567 1568

    Returns:
1569
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1570 1571 1572 1573 1574

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1575 1576
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1577
          #  [0, 1, 0]
1578 1579
          #  [0, 0, 1]]

1580
          data = fluid.layers.eye(2, 3, dtype='int32')
1581
          # [[1, 0, 0]
1582
          #  [0, 1, 0]]
1583 1584

          data = fluid.layers.eye(2, batch_shape=[3])
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1637
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1648 1649
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1650 1651 1652 1653

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1654 1655 1656 1657
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1658 1659 1660 1661 1662 1663
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
1664 1665


1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
def arange(start, end, step=1, dtype=None, name=None):
    """
    Return evenly spaced values within a given interval.
    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
    examples:
        .. code-block:: python
             import paddle.fluid as fluid
             # expected out put: [0, 2, 4, 6, 8]
             data = fluid.layers.arange(0, 10, 2, 'int32')
         #dygraph mode
             import paddle.fluid as fluid
             with fluid.dygraph.guard():
                 x = fluid.layers.arange(0, 6, 2) 
                 # x: [0, 2, 4]
                 # x dtype: float32
             
    """
    helper = LayerHelper("range", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)

    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)

    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


def full(shape,
         fill_value,
         out=None,
         dtype=None,
         device=None,
         stop_gradient=True,
         name=None):
    """
    This Op return a Tensor with the `fill_value` which size is same as `shape`
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        device(str, optional): On which device to run this Op. The :attr:`device` must be
            None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in 
            the paddle program will be chosen. Default value is None.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is True.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The `out` must be a Variable.
        TypeError: The `shape` must be one of Variable, list tuple.
    
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          data1 = fluid.layers.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'full')
    check_type(shape, 'shape', (Variable, list, tuple), 'full')
    if out is not None:
        check_type(shape, 'out', (Variable), 'full')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)

    out.stop_gradient = stop_gradient

    with device_guard(device):
        out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out)

    return out


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = fluid.layers.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

        .. code-block:: python

            # example 2, positive diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            tril = fluid.layers.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

        .. code-block:: python

            # example 3, negative diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            tril = fluid.layers.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

   """

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            import paddle.fluid as fluid
            triu = fluid.layers.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

        .. code-block:: python

            # example 2, positive diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            triu = fluid.layers.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

        .. code-block:: python

            # example 3, negative diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            triu = fluid.layers.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """

    return _tril_triu_op(LayerHelper('triu', **locals()))


2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
    """${comment}

    Args:
        x (Variable): the fist operand of kron op, data type: float16, float32, 
            float64, int32 or int64.
        y (Variable): the second operand of kron op, data type: float16, 
            float32, float64, int32 or int64. Its data type should be the same 
            with x.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of 
            operation. If out is None, a new Varibale will be create to store 
            the result. Defaults to None.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property.  For more information, please 
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
        
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = fluid.layers.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_variable_and_dtype(
            out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'kron')
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181


def trace(input, offset=0, dim1=0, dim2=1, out=None, name=None):
    """
    This OP computes the sum along diagonals of the input tensor.
    
    If ``input`` is 2D, returns the sum of diagonal. 

    If ``input`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
    the 2D planes specified by dim1 and dim2. By default, the 2D planes formed by the first and second dimensions 
    of the input tensor.

    The argument ``offset`` determines where diagonals are taken from input tensor:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        input(Variable): The input tensor. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor will be taken. Default: 0 (main diagonals).
        dim1(int, optional): The first dimension with respect to take diagonal. Default: 0.
        dim2(int, optional): The second dimension with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.dygraph as dg
            import numpy as np
            
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
            
            with dg.guard():
                case1 = dg.to_variable(case1)
                case2 = dg.to_variable(case2)
                case3 = dg.to_variable(case3)
                data1 = fluid.layers.trace(case1) # data1.shape = [1]
                data2 = fluid.layers.trace(case2, offset=1, dim1=1, dim2=2) # data2.shape = [3]
                data3 = fluid.layers.trace(case3, offset=-3, dim1=1, dim2=-1) # data2.shape = [3, 5]
    """
    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

        input_shape = list(input.shape)
        assert len(input_shape) >= 2,                     \
                "The input must be at least 2-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
                len(input_shape)

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2

        assert dim1_ < len(input_shape),     \
            "The argument dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, dim1)

        assert dim2_ < len(input_shape),   \
            "The argument dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, dim2)


        assert  dim1_ != dim2_,   \
               "dim1 and dim2 cannot be the same dimension." \
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)

    if not in_dygraph_mode():
        __check_input(input, offset, dim1, dim2)
    helper = LayerHelper('trace', **locals())

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        check_variable_and_dtype(
            out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'trace')

    helper.append_op(
        type='trace',
        inputs={'Input': [input]},
        attrs={'offset': offset,
               'dim1': dim1,
               'dim2': dim2},
        outputs={'Out': [out]})
    return out