未验证 提交 18877491 编写于 作者: F Feiyu Chan 提交者: GitHub

cherry-pick: add kron op (#24105) (#24159)

* cherrypick: add kron op (#24105)
* add kron op and fluid.layers.kron
* add paddle.complex.kron
上级 d0789013
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/kron_op.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
class KronOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron");
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "kron");
auto dim_x = ctx->GetInputDim("X");
auto dim_y = ctx->GetInputDim("Y");
auto rank_x = dim_x.size();
auto rank_y = dim_y.size();
auto rank = (rank_x > rank_y) ? rank_x : rank_y;
std::vector<int64_t> dim_out;
dim_out.reserve(rank);
for (int i = 0; i < rank; i++) {
int64_t dim_xi = (i < rank - rank_x) ? 1 : dim_x.at(i - (rank - rank_x));
int64_t dim_yi = (i < rank - rank_y) ? 1 : dim_y.at(i - (rank - rank_y));
dim_out.push_back(dim_xi == -1 || dim_yi == -1 ? -1 : dim_xi * dim_yi);
}
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class KronOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), the first operand of kron op");
AddInput("Y", "(Tensor), the second operand of kron op");
AddOutput("Out", "(Tensor), the output of kron op.");
AddComment(R"DOC(
Kron Operator.
This operator computes the Kronecker product of two tensors, a
composite tensor made of blocks of the second tensor scaled by the
first.
This operator assumes that the rank of the two tensors, $X$ and $Y$
are the same, if necessary prepending the smallest with ones. If the
shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
[$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
[$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
products of elements from $X$ and $Y$.
The equation is:
$$
output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
Y[j_{0}, j_{1}, ..., j_{N}]
$$
where
$$
k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
$$
)DOC");
}
};
class KronGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron_grad");
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron_grad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
framework::GradVarName("Out"), "kron_grad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
framework::GradVarName("X"), "kron_grad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Y")), "Output",
framework::GradVarName("Y"), "kron_grad");
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ x_grad_name);
ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
ctx->ShareLoD("Y", /*->*/ y_grad_name);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto out_grad_name = framework::GradVarName("Out");
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
ctx.GetPlace());
}
};
template <typename T>
class KronGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("kron_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput("Y", this->Input("Y"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
grad_op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(kron, ops::KronOp, ops::KronOpMaker,
ops::KronGradOpMaker<paddle::framework::OpDesc>,
ops::KronGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
kron, ops::KronKernel<paddle::platform::CPUDeviceContext, float>,
ops::KronKernel<paddle::platform::CPUDeviceContext, double>,
ops::KronKernel<paddle::platform::CPUDeviceContext,
paddle::platform::float16>,
ops::KronKernel<paddle::platform::CPUDeviceContext, int>,
ops::KronKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OPERATOR(kron_grad, ops::KronGradOp);
REGISTER_OP_CPU_KERNEL(
kron_grad, ops::KronGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::KronGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::KronGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::float16>,
ops::KronGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::KronGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/kron_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
kron, ops::KronKernel<paddle::platform::CUDADeviceContext, float>,
ops::KronKernel<paddle::platform::CUDADeviceContext, double>,
ops::KronKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::KronKernel<paddle::platform::CUDADeviceContext, int>,
ops::KronKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
kron_grad, ops::KronGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::KronGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::KronGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::KronGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::KronGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#if __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#include "thrust/device_vector.h"
#endif
namespace paddle {
namespace operators {
// Process an element in the output, used with a parallel-for
template <typename T>
struct KronElemFunctor {
KronElemFunctor(const T* a, const T* b, T* out, const int64_t* shape_b,
const int64_t* stride_a, const int64_t* stride_b,
const int64_t* stride_out, int ndims)
: a_(a),
b_(b),
out_(out),
shape_b_(shape_b),
stride_a_(stride_a),
stride_b_(stride_b),
stride_out_(stride_out),
ndims_(ndims) {}
HOSTDEVICE void operator()(int64_t idx) const {
// it computes 1 element in the output
int64_t index = idx;
int64_t index_a = 0;
int64_t index_b = 0;
for (int i = 0; i < ndims_; i++) {
auto pos_i = index / stride_out_[i];
index = index % stride_out_[i];
auto pos_ai = pos_i / shape_b_[i];
auto pos_bi = pos_i % shape_b_[i];
index_a += stride_a_[i] * pos_ai;
index_b += stride_b_[i] * pos_bi;
}
out_[idx] = a_[index_a] * b_[index_b];
}
private:
const T* a_;
const T* b_;
T* out_;
const int64_t* shape_b_;
const int64_t* stride_a_;
const int64_t* stride_b_;
const int64_t* stride_out_;
const int ndims_;
};
template <typename DeviceContext, typename T>
struct KronOpFunctor {
void operator()(const DeviceContext& dev_ctx, const framework::Tensor& x,
const framework::Tensor& y, framework::Tensor* out) {
int ndims = out->dims().size();
int64_t numel = out->numel();
const framework::DDim& dim_x = x.dims();
const framework::DDim& dim_y = y.dims();
const framework::DDim& dim_out = out->dims();
const framework::DDim stride_x = framework::stride(dim_x);
const framework::DDim stride_y = framework::stride(dim_y);
const framework::DDim stride_out = framework::stride(dim_out);
const int64_t *p_stride_x = nullptr, *p_stride_y = nullptr,
*p_stride_out = nullptr, *p_shape_y = nullptr;
#if __NVCC__
thrust::device_vector<int64_t> d_stride_x(ndims);
thrust::device_vector<int64_t> d_stride_y(ndims);
thrust::device_vector<int64_t> d_stride_out(ndims);
thrust::device_vector<int64_t> d_shape_y(ndims);
thrust::copy(stride_x.Get(), stride_x.Get() + ndims, d_stride_x.begin());
thrust::copy(stride_y.Get(), stride_y.Get() + ndims, d_stride_y.begin());
thrust::copy(stride_out.Get(), stride_out.Get() + ndims,
d_stride_out.begin());
thrust::copy(dim_y.Get(), dim_y.Get() + ndims, d_shape_y.begin());
p_stride_x = thrust::raw_pointer_cast(d_stride_x.data());
p_stride_y = thrust::raw_pointer_cast(d_stride_y.data());
p_stride_out = thrust::raw_pointer_cast(d_stride_out.data());
p_shape_y = thrust::raw_pointer_cast(d_shape_y.data());
#else
p_stride_x = stride_x.Get();
p_stride_y = stride_y.Get();
p_stride_out = stride_out.Get();
p_shape_y = dim_y.Get();
#endif
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
KronElemFunctor<T> functor(x.data<T>(), y.data<T>(), out->data<T>(),
p_shape_y, p_stride_x, p_stride_y, p_stride_out,
ndims);
for_range(functor);
}
};
template <typename T>
struct KronGradElemFunctor {
KronGradElemFunctor(const T* dout, const T* A, const T* B, T* dout_a,
T* dout_b, const int64_t* stride_dout,
const int64_t* stride_a, const int64_t* stride_b,
const int64_t* shape_b, const int64_t numel_a,
const int64_t numel_b, const int ndims)
: dout_(dout),
A_(A),
B_(B),
dout_a_(dout_a),
dout_b_(dout_b),
stride_dout_(stride_dout),
stride_a_(stride_a),
stride_b_(stride_b),
shape_b_(shape_b),
numel_a_(numel_a),
numel_b_(numel_b),
ndims_(ndims) {}
HOSTDEVICE void operator()(int64_t idx) {
int64_t index = idx;
int64_t index_a = 0;
int64_t index_b = 0;
for (int i = 0; i < ndims_; i++) {
auto pos_i = index / stride_dout_[i];
index = index % stride_dout_[i];
auto pos_ai = pos_i / shape_b_[i];
auto pos_bi = pos_i % shape_b_[i];
index_a += stride_a_[i] * pos_ai;
index_b += stride_b_[i] * pos_bi;
}
size_t index_out_a = index_a * numel_b_ + index_b;
size_t index_out_b = index_b * numel_a_ + index_a;
dout_a_[index_out_a] = dout_[idx] * B_[index_b];
dout_b_[index_out_b] = dout_[idx] * A_[index_a];
}
private:
const T* dout_;
const T* A_;
const T* B_;
T* dout_a_;
T* dout_b_;
const int64_t* stride_dout_;
const int64_t* stride_a_;
const int64_t* stride_b_;
const int64_t* shape_b_;
const int64_t numel_a_;
const int64_t numel_b_;
const int ndims_;
};
template <typename T>
struct IdentityFunctor {
HOSTDEVICE explicit inline IdentityFunctor() {}
HOSTDEVICE inline T operator()(const T& x) const { return x; }
};
template <typename DeviceContext, typename T>
struct KronGradOpFunctor {
void operator()(const DeviceContext& dev_ctx, const framework::Tensor& dout,
const framework::Tensor& x, const framework::Tensor& y,
framework::Tensor* dx, framework::Tensor* dy) {
int ndims = dout.dims().size();
int64_t numel = dout.numel();
int64_t numel_x = x.numel();
int64_t numel_y = y.numel();
const framework::DDim& dim_x = x.dims();
const framework::DDim& dim_y = y.dims();
const framework::DDim& dim_dout = dout.dims();
const framework::DDim stride_x = framework::stride(dim_x);
const framework::DDim stride_y = framework::stride(dim_y);
const framework::DDim stride_dout = framework::stride(dim_dout);
const int64_t* p_stride_x = nullptr;
const int64_t* p_stride_y = nullptr;
const int64_t* p_stride_dout = nullptr;
const int64_t* p_shape_y = nullptr;
#if __NVCC__
thrust::device_vector<int64_t> d_stride_x(ndims);
thrust::device_vector<int64_t> d_stride_y(ndims);
thrust::device_vector<int64_t> d_stride_dout(ndims);
thrust::device_vector<int64_t> d_shape_y(ndims);
thrust::copy(stride_x.Get(), stride_x.Get() + ndims, d_stride_x.begin());
thrust::copy(stride_y.Get(), stride_y.Get() + ndims, d_stride_y.begin());
thrust::copy(stride_dout.Get(), stride_dout.Get() + ndims,
d_stride_dout.begin());
thrust::copy(dim_y.Get(), dim_y.Get() + ndims, d_shape_y.begin());
p_stride_x = thrust::raw_pointer_cast(d_stride_x.data());
p_stride_y = thrust::raw_pointer_cast(d_stride_y.data());
p_stride_dout = thrust::raw_pointer_cast(d_stride_dout.data());
p_shape_y = thrust::raw_pointer_cast(d_shape_y.data());
#else
p_stride_x = stride_x.Get();
p_stride_y = stride_y.Get();
p_stride_dout = stride_dout.Get();
p_shape_y = dim_y.Get();
#endif
// dout_x: dout * kron(ones(X), Y) re-aranged in shape (numel_x, numel_y)
// dout_y: dout * kron(X, ones(Y)) re-aranged in shaoe (numel_y, numel_x)
framework::Tensor dout_x;
dout_x.mutable_data<T>({numel_x, numel_y}, dev_ctx.GetPlace());
framework::Tensor dout_y;
dout_y.mutable_data<T>({numel_y, numel_x}, dev_ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
KronGradElemFunctor<T> func(dout.data<T>(), x.data<T>(), y.data<T>(),
dout_x.data<T>(), dout_y.data<T>(),
p_stride_dout, p_stride_x, p_stride_y,
p_shape_y, numel_x, numel_y, ndims);
for_range(func);
// reduce_sum along aixs 1
#if __NVCC__
auto stream = dev_ctx.stream(); // it is a cuda device_context
TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
dout_x, dx, {1}, static_cast<T>(0), cub::Sum(), IdentityFunctor<T>(),
stream);
TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
dout_y, dy, {1}, static_cast<T>(0), cub::Sum(), IdentityFunctor<T>(),
stream);
#else
auto eigen_dout_x = framework::EigenMatrix<T>::Reshape(dout_x, 1);
auto eigen_dout_y = framework::EigenMatrix<T>::Reshape(dout_y, 1);
auto eigen_vec_dx = framework::EigenVector<T>::Flatten(*dx);
auto eigen_vec_dy = framework::EigenVector<T>::Flatten(*dy);
auto* place = dev_ctx.eigen_device();
Eigen::array<int, 1> reduce_dim = {1};
eigen_vec_dx.device(*place) = eigen_dout_x.sum(reduce_dim);
eigen_vec_dy.device(*place) = eigen_dout_y.sum(reduce_dim);
#endif
}
};
inline framework::Tensor UnsqueezeTo(const framework::Tensor& src, int ndims) {
const framework::DDim& shape = src.dims();
int rank = shape.size();
framework::Tensor res;
res.ShareDataWith(src);
PADDLE_ENFORCE_LE(
rank, ndims,
platform::errors::InvalidArgument(
"The input Tensor's rank should be less than or equal to ndims"
"Received input Tensor's rank = %d, ndims = %d",
rank, ndims));
if (rank < ndims) {
std::vector<int64_t> new_dim(ndims, 1);
for (int i = ndims - rank; i < ndims; i++) {
new_dim[i] = shape[i - ndims + rank];
}
res.Resize(framework::make_ddim(new_dim));
}
return res;
}
template <typename DeviceContext, typename T>
class KronKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& ctx) const {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
int ndims = out->dims().size();
framework::Tensor xx = UnsqueezeTo(*x, ndims);
framework::Tensor yy = UnsqueezeTo(*y, ndims);
KronOpFunctor<DeviceContext, T> func;
func(dev_ctx, xx, yy, out);
}
};
template <typename DeviceContext, typename T>
class KronGradKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& ctx) const {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
dx->mutable_data<T>(ctx.GetPlace());
dy->mutable_data<T>(ctx.GetPlace());
int ndims = dout->dims().size();
framework::Tensor xx = UnsqueezeTo(*x, ndims);
framework::Tensor dxx = UnsqueezeTo(*dx, ndims);
framework::Tensor yy = UnsqueezeTo(*y, ndims);
framework::Tensor dyy = UnsqueezeTo(*dy, ndims);
KronGradOpFunctor<DeviceContext, T> func;
func(dev_ctx, *dout, xx, yy, &dxx, &dyy);
}
};
} // namespace operators
} // namespace paddle
......@@ -12,12 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.common_ops_import import *
from ..helper import is_complex, is_real, complex_variable_exists
from ...fluid.framework import ComplexVariable
from ...fluid import layers
__all__ = [
'elementwise_add', 'elementwise_sub', 'elementwise_mul', 'elementwise_div'
'elementwise_add', 'elementwise_sub', 'elementwise_mul', 'elementwise_div',
'kron'
]
......@@ -37,6 +39,9 @@ def elementwise_add(x, y, axis=-1, name=None):
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
......@@ -85,6 +90,9 @@ def elementwise_sub(x, y, axis=-1, name=None):
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
......@@ -133,6 +141,9 @@ def elementwise_mul(x, y, axis=-1, name=None):
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
......@@ -184,6 +195,9 @@ def elementwise_div(x, y, axis=-1, name=None):
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
......@@ -214,3 +228,71 @@ def elementwise_div(x, y, axis=-1, name=None):
e,
axis=axis,
name=name)
def kron(x, y, name=None):
"""
The kronecker product of two complex tensors. At least one of inputs :attr:`x`
and :attr:`y` must be a ComplexVariable. See the detailed description for
the function and other arguments in :ref:`api_paddle_tensor_kron` .
Let $x = a + ib$, and $y = c + id$, the euqation is
.. math::
kron(x, y) = kron(a, c) - kron(b, d) + i(kron(a, d) + kron(b, c))
Args:
x (Variable|ComplexVariable): The first input Variable or ComplexVariable
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
y (Variable|ComplexVariable): The second input Variable or ComplexVariable
with any number of dimensions. The supported data types include float32
and float64 when it is a Variable. Otherwise the supported data types
are complex64 or complex128.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
ComplexVariable: The kronecker product, data type: complex64 or complex128, depending on the data type of x and y. If the data types of x and y are float32/complex64, the data type of the output is complex64, else if the data types of x and y are float64/complex128, the data type of the output is complex128.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid.dygraph as dg
a = np.array([[1.0+1.0j, 2.0+1.0j], [3.0+1.0j, 4.0+1.0j]])
b = np.array([[5.0+2.0j, 6.0+2.0j], [7.0+2.0j, 8.0+2.0j]])
place = fluid.CPUPlace()
with dg.guard(place):
x = dg.to_variable(a)
y = dg.to_variable(b)
out = paddle.complex.kron(x, y)
print(out.numpy())
# [[ 3. +7.j 4. +8.j 8. +9.j 10.+10.j]
# [ 5. +9.j 6.+10.j 12.+11.j 14.+12.j]
# [13.+11.j 16.+12.j 18.+13.j 22.+14.j]
# [19.+13.j 22.+14.j 26.+15.j 30.+16.j]]
"""
complex_variable_exists([x, y], "kron")
# X = A + Bi, Y = C+Di
# kron(X, Y) = kron(A, C) - kron(B, D) + (kron(A, D) + kron(B, C))i
(a, b) = (x.real, x.imag) if is_complex(x) else (x, None)
(c, d) = (y.real, y.imag) if is_complex(y) else (y, None)
if is_real(b) and is_real(d):
real = layers.kron(a, c) - layers.kron(b, d)
imag = layers.kron(a, d) + layers.kron(b, c)
elif is_real(b):
real = layers.kron(a, c)
imag = layers.kron(b, c)
else:
# is_real(d)
real = layers.kron(a, c)
imag = layers.kron(a, d)
return ComplexVariable(real, imag)
......@@ -30,11 +30,32 @@ import numpy
import warnings
__all__ = [
'create_tensor', 'create_parameter', 'create_global_var', 'cast',
'tensor_array_to_tensor', 'concat', 'sums', 'assign',
'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
'create_tensor',
'create_parameter',
'create_global_var',
'cast',
'tensor_array_to_tensor',
'concat',
'sums',
'assign',
'fill_constant_batch_size_like',
'fill_constant',
'argmin',
'argmax',
'argsort',
'ones',
'zeros',
'reverse',
'has_inf',
'has_nan',
'isfinite',
'range',
'linspace',
'zeros_like',
'ones_like',
'diag',
'eye',
'kron',
]
......@@ -1559,3 +1580,69 @@ def ones_like(x, out=None):
attrs={'value': 1.0},
outputs={'Out': [out]})
return out
@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
"""${comment}
Args:
x (Variable): the fist operand of kron op, data type: float16, float32,
float64, int32 or int64.
y (Variable): the second operand of kron op, data type: float16,
float32, float64, int32 or int64. Its data type should be the same
with x.
out (Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of
operation. If out is None, a new Varibale will be create to store
the result. Defaults to None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
Examples:
.. code-block:: python
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
import numpy as np
a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
b = np.arange(1, 10).reshape(3, 3).astype(np.float32)
place = fluid.CPUPlace()
with dg.guard(place):
a_var = dg.to_variable(a)
b_var = dg.to_variable(b)
c_var = fluid.layers.kron(a_var, b_var)
c_np = c_var.numpy()
print(c_np)
#[[ 1. 2. 3. 2. 4. 6.]
# [ 4. 5. 6. 8. 10. 12.]
# [ 7. 8. 9. 14. 16. 18.]
# [ 3. 6. 9. 4. 8. 12.]
# [12. 15. 18. 16. 20. 24.]
# [21. 24. 27. 28. 32. 36.]]
"""
if in_dygraph_mode():
return core.ops.kron(x, y)
helper = LayerHelper('kron', **locals())
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
check_variable_and_dtype(
y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
if out is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
check_variable_and_dtype(
out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
'kron')
helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
return out
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import fluid, tensor
import paddle.complex as cpx
import paddle.fluid.dygraph as dg
import numpy as np
import unittest
class ComplexKronTestCase(unittest.TestCase):
def __init__(self, methodName='runTest', x=None, y=None):
super(ComplexKronTestCase, self).__init__(methodName)
self.x = x
self.y = y
def setUp(self):
self.ref_result = np.kron(self.x, self.y)
def runTest(self):
place = fluid.CPUPlace()
self.test_identity(place)
if fluid.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.test_identity(place)
def test_identity(self, place):
with dg.guard(place):
x_var = dg.to_variable(self.x)
y_var = dg.to_variable(self.y)
out_var = cpx.kron(x_var, y_var)
np.testing.assert_allclose(out_var.numpy(), self.ref_result)
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
suite.addTest(
ComplexKronTestCase(
x=np.random.randn(2, 2) + 1j * np.random.randn(2, 2),
y=np.random.randn(3, 3) + 1j * np.random.randn(3, 3)))
suite.addTest(
ComplexKronTestCase(
x=np.random.randn(2, 2),
y=np.random.randn(3, 3) + 1j * np.random.randn(3, 3)))
suite.addTest(
ComplexKronTestCase(
x=np.random.randn(2, 2) + 1j * np.random.randn(2, 2),
y=np.random.randn(3, 3)))
suite.addTest(
ComplexKronTestCase(
x=np.random.randn(2, 2) + 1j * np.random.randn(2, 2),
y=np.random.randn(2, 2, 3)))
return suite
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
class TestKronOp(OpTest):
def setUp(self):
self.op_type = "kron"
self.dtype = self._init_dtype()
x = np.random.uniform(size=(10, 10)).astype(self.dtype)
y = np.random.uniform(size=(10, 10)).astype(self.dtype)
out_ref = np.kron(x, y)
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': out_ref}
def _init_dtype(self):
return "float64"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out')
class TestKronOp2(TestKronOp):
def setUp(self):
self.op_type = "kron"
self.dtype = self._init_dtype()
x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
y = np.random.uniform(size=(10, 10)).astype(self.dtype)
out_ref = np.kron(x, y)
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': out_ref}
class TestKronOp3(TestKronOp):
def setUp(self):
self.op_type = "kron"
self.dtype = self._init_dtype()
x = np.random.uniform(size=(10, 10)).astype(self.dtype)
y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
out_ref = np.kron(x, y)
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': out_ref}
class TestKronLayer(unittest.TestCase):
def test_case(self):
a = np.random.randn(10, 10).astype(np.float64)
b = np.random.randn(10, 10).astype(np.float64)
place = fluid.CPUPlace()
with dg.guard(place):
a_var = dg.to_variable(a)
b_var = dg.to_variable(b)
c_var = fluid.layers.kron(a_var, b_var)
np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))
def test_case_with_output(self):
a = np.random.randn(10, 10).astype(np.float64)
b = np.random.randn(10, 10).astype(np.float64)
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
a_var = fluid.data("a", [-1, -1], dtype="float64")
b_var = fluid.data("b", [-1, -1], dtype="float64")
out_var = fluid.layers.create_tensor("float64", "c")
fluid.layers.kron(a_var, b_var, out=out_var)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(start)
c, = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
np.testing.assert_allclose(c, np.kron(a, b))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册