tensor.py 76.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21 22
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..framework import Variable, in_dygraph_mode
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
33 34 35 36 37 38
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'kron',
    'full_like', 'arange', 'full', 'tril', 'triu'
Y
Yu Yang 已提交
39 40 41
]


X
xuwei06 已提交
42
def create_tensor(dtype, name=None, persistable=False):
43
    """
W
wangchaochaohu 已提交
44
    Create a variable, which will hold a Tensor with data type dtype.
45 46

    Args:
W
wangchaochaohu 已提交
47 48 49 50
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
51
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
52
            default value is False.
53 54

    Returns:
W
wangchaochaohu 已提交
55
        Variable: The tensor to be created according to dtype.
56 57 58 59

    Examples:
        .. code-block:: python

60
          import paddle.fluid as fluid
61 62
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
63 64 65 66
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
67
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
68 69
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
70 71


72 73
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
74
                     name=None,
75 76 77 78
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
79
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
80 81 82 83 84
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

85 86 87 88 89 90 91
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
92 93 94
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
95
        default_initializer (Initializer, optional): Initializer for the parameter
96 97

    Returns:
98
        The created parameter.
Y
yuyang18 已提交
99 100

    Examples:
101 102
        .. code-block:: python

103
            import paddle.fluid as fluid
104 105
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
106
    """
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
126
    helper = LayerHelper("create_parameter", **locals())
127
    if attr is None:
X
xuwei06 已提交
128
        attr = ParamAttr(name=name)
129 130
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
131 132 133
                                   default_initializer)


134 135 136 137 138 139 140
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
141
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
142

143 144 145
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
146
                      variable will be filled with it.
147 148
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
149
                           Default: False
150
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
151
                         Default: False
152 153
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
154 155

    Returns:
156
        Variable: The created Variable
F
fengjiayi 已提交
157 158 159 160

    Examples:
        .. code-block:: python

161
            import paddle.fluid as fluid
162 163
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
164
                                           persistable=True, force_cpu=True, name='new_var')
165
    """
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
183 184
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
185 186 187 188 189
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
190 191 192
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
193

Q
Qiao Longfei 已提交
194 195 196
    return var


197
def cast(x, dtype):
Y
Yu Yang 已提交
198
    """
199 200 201
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
202 203

    Args:
204 205 206
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
207
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
208 209

    Returns:
210
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
211 212 213

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
214

215
            import paddle.fluid as fluid
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
238
    """
239 240
    check_variable_and_dtype(
        x, 'x',
241 242
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
243 244 245 246 247 248
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
249
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
250 251 252 253 254 255 256 257 258
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


259
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
260
    """
261 262
    **Concat**

263
    This OP concatenates the input along the axis.
264 265

    Args:
266 267
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
268
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
269 270 271 272 273
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
274 275

    Returns:
276
        Variable: A Tensor with the same data type as input's.
277 278 279

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
280

281
            import paddle.fluid as fluid
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
304
    """
305 306

    if in_dygraph_mode():
S
songyouwei 已提交
307 308 309 310 311
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
312
        return core.ops.concat(input, 'axis', axis)
313

314 315 316 317 318
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
319
    for id, x in enumerate(input):
320 321
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
322 323
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
324

325
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
326
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
350 351 352
    return out


G
Guo Sheng 已提交
353
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
354
    """
G
Guo Sheng 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
405 406

    Args:
G
Guo Sheng 已提交
407 408 409 410 411 412 413
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
414 415

    Returns:
G
Guo Sheng 已提交
416 417 418
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
419 420 421 422

    Examples:
        .. code-block:: python

423
            import paddle.fluid as fluid
424
            import numpy as np
G
Guo Sheng 已提交
425 426 427 428 429 430 431
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
432
    """
433 434 435 436 437 438 439 440 441 442 443
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

444 445 446 447 448
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
449
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
450 451 452
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
453
        type='tensor_array_to_tensor',
L
li099 已提交
454 455 456
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
457 458
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
459 460 461
    return out, out_index


462
def sums(input, out=None):
F
fengjiayi 已提交
463
    """
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
485 486

    Args:
487 488 489 490
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
491 492

    Returns:
493 494
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
495 496

    Examples:
F
fengjiayi 已提交
497
        .. code-block:: python
K
kavyasrinet 已提交
498

499 500 501 502 503 504 505 506 507
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
508

509 510
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
511
    """
512 513 514 515 516 517 518 519 520
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
521 522
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
523 524
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
525 526 527 528
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
529 530 531 532 533
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
534 535 536
    return out


F
fengjiayi 已提交
537
def assign(input, output=None):
538
    """
539
    The OP copies the :attr:`input` to the :attr:`output`.
540

541 542 543 544 545
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
546 547

    Returns:
548
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
549 550 551

    Examples:
        .. code-block:: python
552

553
          import paddle.fluid as fluid
554 555 556 557 558 559
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
560
    """
Y
Yu Yang 已提交
561
    helper = LayerHelper('assign', **locals())
562
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
563
    if isinstance(input, Variable):
564 565 566
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
567 568 569
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
570
        helper.append_op(
R
robot 已提交
571
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
572 573
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
574 575 576 577
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
578
            value_name = "fp32_values"
579
            values = [float(v) for v in input.flat]
580
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
581
            value_name = "int32_values"
582
            values = [int(v) for v in input.flat]
583 584 585
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
586
        else:
587 588
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
589
                "the data type of 'input' must be bool, float32, int32 or int64, but "
590
                "received %s." % convert_dtype(dtype))
591 592 593
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
594 595 596
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
597 598 599 600 601 602
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
603
                value_name: values
X
xuwei06 已提交
604 605
            })

Y
Yu Yang 已提交
606 607 608
    return output


Q
QI JUN 已提交
609
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
610
    """
W
wangchaochaohu 已提交
611
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
612
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
613

T
tianshuo78520a 已提交
614
    The attribute `stop_gradient` of the created Tensor is set to True.
615 616

    Args:
617 618 619 620
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
621 622
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
623 624 625
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
626 627 628
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
629 630

    Returns:
W
wangchaochaohu 已提交
631 632 633 634 635
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
636 637 638 639

    Examples:
        .. code-block:: python

640
          import paddle.fluid as fluid
641 642 643
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
644
          # data1=[[5], [5]] data2=[[5], [5]]
645 646 647 648 649 650 651 652

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
653 654 655 656
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
657
    """
W
wangchaochaohu 已提交
658 659 660 661
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
662
    else:
W
wangchaochaohu 已提交
663 664 665 666 667
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
668 669 670

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
671 672 673
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
674
        else:
S
songyouwei 已提交
675
            shape = list(shape.numpy().astype(int))
676 677
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
678 679 680 681 682 683 684

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

685 686
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
687 688
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
689 690 691
        out.stop_gradient = True
        return out

692
    check_dtype(dtype, 'dtype',
693 694 695
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
696 697 698 699 700 701 702 703
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
704 705 706 707 708 709
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
710

Y
Yu Yang 已提交
711
    if out is None:
X
Xin Pan 已提交
712
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
713
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
714 715
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
716
        inputs=inputs,
Y
Yu Yang 已提交
717
        outputs={'Out': [out]},
L
liym27 已提交
718
        attrs=attrs,
M
minqiyang 已提交
719
        stop_gradient=True)
Y
Yu Yang 已提交
720 721 722 723
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
724
@templatedoc()
Y
Yu Yang 已提交
725 726 727 728 729
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
730 731
                                  output_dim_idx=0,
                                  force_cpu=False):
732
    """
T
tianshuo78520a 已提交
733
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
734 735 736 737
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
738 739

    Args:
W
wangchaochaohu 已提交
740 741 742 743 744 745 746 747 748 749 750
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
751
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
752 753

    Returns:
W
wangchaochaohu 已提交
754
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
755 756 757 758 759

    Examples:

        .. code-block:: python

760
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
761
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
762
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
763
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
764

765
    """
Y
Yu Yang 已提交
766
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
767
    out = helper.create_variable_for_type_inference(dtype=dtype)
768 769 770 771 772 773
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
774
        'force_cpu': force_cpu
775 776 777 778 779
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
780 781 782 783
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
784
        attrs=attrs)
Y
Yu Yang 已提交
785 786 787 788
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
789 790 791 792
def argmin(x, axis=0):
    """
    **argmin**

793 794
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
795 796

    Args:
797 798 799 800 801
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
802

S
sneaxiy 已提交
803
    Returns:
804
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
805

S
sneaxiy 已提交
806 807
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
808

809
            import paddle.fluid as fluid
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
837
    """
838 839 840
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
841
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
842
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
843 844 845 846 847
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
848
    out.stop_gradient = True
S
sneaxiy 已提交
849 850 851 852 853 854 855
    return out


def argmax(x, axis=0):
    """
    **argmax**

856 857
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
858 859

    Args:
860 861 862 863 864
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
865

S
sneaxiy 已提交
866
    Returns:
867
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
868

S
sneaxiy 已提交
869 870
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
871

872
            import paddle.fluid as fluid
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
900
    """
901 902 903
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
904
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
905
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
906 907 908 909 910
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
911
    out.stop_gradient = True
S
sneaxiy 已提交
912 913 914
    return out


915
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
916
    """
917 918 919
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
920 921

    Args:
922 923 924 925 926
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
927 928 929
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
930 931 932
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
933 934

    Returns:
935 936 937
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
938 939 940 941

    Examples:
        .. code-block:: python

942
            import paddle.fluid as fluid
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
984
    """
985 986 987
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
988
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
989 990 991 992
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
993 994 995 996
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
997
                 'Indices': ids},
998 999
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1000 1001 1002
    return out, ids


Y
Yang Yu 已提交
1003
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1004
    """
1005 1006
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1007

1008 1009 1010 1011 1012 1013 1014
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1015 1016

    Returns:
1017
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1018 1019 1020 1021

    Examples:
        .. code-block:: python

1022
          import paddle.fluid as fluid
1023
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1024
    """
1025 1026 1027 1028
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1029 1030
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1031 1032 1033
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1034
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1035
    """
1036 1037
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1038

1039 1040 1041 1042 1043 1044 1045
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1046 1047

    Returns:
1048
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1049 1050 1051 1052

    Examples:
        .. code-block:: python

1053
          import paddle.fluid as fluid
1054
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1055
    """
1056
    check_type(shape, 'shape', (list, tuple), 'zeros')
1057 1058 1059
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1060
    return fill_constant(value=0.0, **locals())
1061 1062


F
fengjiayi 已提交
1063 1064
def reverse(x, axis):
    """
1065
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1066

1067 1068 1069 1070 1071
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1072 1073

    Returns:
1074
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1075 1076 1077 1078

    Examples:
        .. code-block:: python

1079
          import paddle.fluid as fluid
1080 1081 1082 1083
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1084 1085 1086 1087
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1088
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1089 1090
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1091
        inputs={'X': x},
F
fengjiayi 已提交
1092 1093 1094 1095 1096
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1097 1098 1099 1100 1101 1102 1103
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1104 1105 1106
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1122 1123
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1124
        file_path(str): The file path where variables will be saved.
1125
        overwrite(bool): Whether or not cover the given file when it has already
1126 1127
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1128 1129 1130 1131 1132 1133 1134 1135

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1136
            import paddle.fluid as fluid
1137 1138 1139 1140 1141 1142 1143
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1156
    Loads a list of variable from a single file.
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1168 1169 1170 1171 1172 1173 1174


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1175
       x (Variable): The Tensor/LoDTensor to be checked.
1176 1177

    Returns:
L
liu zhengxi 已提交
1178
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1179 1180 1181 1182 1183 1184 1185 1186
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1187
    """
1188
    check_type(x, 'x', (Variable), 'has_inf')
1189
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1190
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1191 1192 1193 1194 1195 1196 1197 1198 1199
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1200
       x (Variable): The Tensor/LoDTensor to be checked.
1201 1202

    Returns:
L
liu zhengxi 已提交
1203
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1204 1205 1206 1207 1208 1209 1210 1211
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1212
    """
1213
    check_type(x, 'x', (Variable), 'has_nan')
1214
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1215
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1230 1231 1232 1233 1234

    Examples:

        .. code-block:: python

1235
            import paddle.fluid as fluid
1236 1237 1238
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1239
            out = fluid.layers.isfinite(var)
1240
    """
1241 1242
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1243
    helper = LayerHelper("isfinite", **locals())
1244

1245
    out = helper.create_variable_for_type_inference(dtype='bool')
1246 1247
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1257 1258 1259 1260
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1261
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1262 1263 1264
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1265
                                  distance between two adjacent values, out[i+1] - out[i].
1266
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1267

L
Liufang Sang 已提交
1268 1269 1270
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1271 1272 1273 1274 1275

    examples:

        .. code-block:: python

1276
             import paddle.fluid as fluid
W
whs 已提交
1277 1278 1279 1280 1281
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1282 1283 1284 1285
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1286 1287
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1288 1289 1290 1291 1292
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1293 1294
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1295 1296 1297
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1298 1299
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1300 1301
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1311
    out.stop_gradient = True
W
whs 已提交
1312
    return out
Z
zhoukunsheng 已提交
1313 1314


Z
zhoukunsheng 已提交
1315 1316
def linspace(start, stop, num, dtype):
    """
1317
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1318 1319

    Args:
1320 1321 1322 1323 1324 1325 1326
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1327 1328

    Returns:
1329 1330 1331
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1332

Z
zhoukunsheng 已提交
1333
    Examples:
Z
zhoukunsheng 已提交
1334 1335
        .. code-block:: python

1336
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1337 1338
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1339 1340 1341 1342

    """
    helper = LayerHelper("linspace", **locals())

1343 1344 1345 1346
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1347 1348
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1349 1350 1351 1352
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1353 1354
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1355 1356 1357
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1358 1359
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1360 1361
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1372 1373


Z
zhoukunsheng 已提交
1374 1375
def zeros_like(x, out=None):
    """
1376
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1377 1378 1379
    with `x`.

    Args:
1380 1381 1382
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1383
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1384 1385

    Returns:
1386 1387
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1388 1389 1390 1391

    Examples:
        .. code-block:: python

1392
          import paddle.fluid as fluid
1393
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1394 1395
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1396 1397
    """

1398 1399
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1400 1401 1402
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1403 1404 1405 1406 1407
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1408 1409 1410 1411
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1412 1413 1414 1415


def diag(diagonal):
    """
1416
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1417 1418

    Args:
1419 1420
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1421 1422

    Returns:
1423 1424
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1425 1426 1427 1428 1429 1430 1431

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1432 1433 1434

          import paddle.fluid as fluid
          import numpy as np
1435 1436 1437
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1438 1439

    """
1440 1441 1442
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1455 1456


1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1469 1470
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1471 1472

    Returns:
1473
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1474 1475 1476 1477 1478

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1479 1480
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1481
          #  [0, 1, 0]
1482 1483
          #  [0, 0, 1]]

1484
          data = fluid.layers.eye(2, 3, dtype='int32')
1485
          # [[1, 0, 0]
1486
          #  [0, 1, 0]]
1487 1488

          data = fluid.layers.eye(2, batch_shape=[3])
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1541
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1552 1553
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1554 1555 1556 1557

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1558 1559 1560 1561
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1562 1563 1564 1565 1566 1567
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
1568 1569


1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
def full_like(input,
              fill_value,
              out=None,
              dtype=None,
              device=None,
              stop_gradient=True,
              name=None):
    """
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
    Args:
        input(Variable): The input tensor which specifies shape and dtype.
        fill_value: The value to fill the tensor with. Data type can be bool, float32, float64, int32, int64. Default value is 0.
        out(Variable): The output tensor.
    Returns:
        out(Variable): The tensor variable storing the output.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          import numpy as np

          input = fluid.data(name='input', dtype='float32', shape=[2, 3])
          output = fluid.layers.full_like(input, 2.0)
          exe = fluid.Executor(fluid.CPUPlace())
          exe.run(fluid.default_startup_program())
          img=np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
          res = exe.run(fluid.default_main_program(), feed={'input':img}, fetch_list=[output])
          print(res) # [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
    """
    helper = LayerHelper("full_like", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'int32', 'int64'], 'full_like')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs={'value': fill_value},
        outputs={'Out': [out]})
    out.stop_gradient = stop_gradient

    return out


def arange(start, end, step=1, dtype=None, name=None):
    """
    Return evenly spaced values within a given interval.
    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
    examples:
        .. code-block:: python
             import paddle.fluid as fluid
             # expected out put: [0, 2, 4, 6, 8]
             data = fluid.layers.arange(0, 10, 2, 'int32')
         #dygraph mode
             import paddle.fluid as fluid
             with fluid.dygraph.guard():
                 x = fluid.layers.arange(0, 6, 2) 
                 # x: [0, 2, 4]
                 # x dtype: float32
             
    """
    helper = LayerHelper("range", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)

    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)

    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


def full(shape,
         fill_value,
         out=None,
         dtype=None,
         device=None,
         stop_gradient=True,
         name=None):
    """
    This Op return a Tensor with the `fill_value` which size is same as `shape`
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        device(str, optional): On which device to run this Op. The :attr:`device` must be
            None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in 
            the paddle program will be chosen. Default value is None.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is True.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The `out` must be a Variable.
        TypeError: The `shape` must be one of Variable, list tuple.
    
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          data1 = fluid.layers.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'full')
    check_type(shape, 'shape', (Variable, list, tuple), 'full')
    if out is not None:
        check_type(shape, 'out', (Variable), 'full')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)

    out.stop_gradient = stop_gradient

    with device_guard(device):
        out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out)

    return out


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = fluid.layers.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

        .. code-block:: python

            # example 2, positive diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            tril = fluid.layers.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

        .. code-block:: python

            # example 3, negative diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            tril = fluid.layers.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

   """

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            import paddle.fluid as fluid
            triu = fluid.layers.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

        .. code-block:: python

            # example 2, positive diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            triu = fluid.layers.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

        .. code-block:: python

            # example 3, negative diagonal value
            import paddle.fluid as fluid
            import numpy as np

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            triu = fluid.layers.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """

    return _tril_triu_op(LayerHelper('triu', **locals()))


1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
    """${comment}

    Args:
        x (Variable): the fist operand of kron op, data type: float16, float32, 
            float64, int32 or int64.
        y (Variable): the second operand of kron op, data type: float16, 
            float32, float64, int32 or int64. Its data type should be the same 
            with x.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of 
            operation. If out is None, a new Varibale will be create to store 
            the result. Defaults to None.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property.  For more information, please 
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
        
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = fluid.layers.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_variable_and_dtype(
            out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'kron')
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out