optimizer.py 20.0 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

3
import paddle.v2.framework.framework as framework
Q
Qiao Longfei 已提交
4
from paddle.v2.framework.framework import unique_name, Program
5
from paddle.v2.framework.backward import append_backward_ops
Q
Qiao Longfei 已提交
6
from paddle.v2.framework.initializer import ConstantInitializer
7
from paddle.v2.framework.regularizer import append_regularization_ops
Q
Qiao Longfei 已提交
8
from paddle.v2.framework.layer_helper import LayerHelper
9

10
__all__ = [
11 12
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
    'AdamaxOptimizer'
13
]
Q
Qiao Longfei 已提交
14 15 16 17 18 19


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
20 21
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
22 23
    """

24 25
    def __init__(self, global_step=None):
        self._global_step = global_step
26 27 28 29 30
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
31
        self.helper = None
Q
Qiao Longfei 已提交
32 33 34 35 36 37

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def _initialize_tensors(self, block):
        """Create all necessary tensors, that will be shared for all parameter updates.

        Tensors like learning rate should be initialized here.

        Args:
            block: the block in which the loss variable is present
        """
        pass

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
54
        """
55 56
        pass

57 58 59 60 61 62 63 64 65 66 67 68 69
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
70
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
71 72 73 74 75 76 77 78 79 80 81 82 83
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
            raise Exception("Accumulator {} already exists for parmeter {}".
                            format(name, param.name))
Q
Qiao Longfei 已提交
84 85 86 87 88 89 90 91 92 93 94

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
            dtype=dtype or param.data_type,
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
            var, initializer=ConstantInitializer(value=float(fill_value)))
        self._accumulators[name][param.name] = var
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
132 133 134
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
135
                                 startup_program=None):
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
143 144 145 146
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
147
          :param startup_program: 
Q
Qiao Longfei 已提交
148
        """
149 150 151 152 153
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
154
        # for parameters and extend _finish_update method to add custom ops.
155 156

        # Create any accumulators
Q
Qiao Longfei 已提交
157 158
        program = loss.block.program
        self.helper = LayerHelper(
159 160 161
            self.__class__.__name__,
            main_program=program,
            startup_program=startup_program)
162 163 164 165 166
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])
        # Create any necessary tensors
        self._initialize_tensors(loss.block)

Q
Qiao Longfei 已提交
167 168 169 170 171 172
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is not None:
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
173

174 175 176 177 178 179 180 181 182 183
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

184 185
        if self._global_step is not None:
            return_ops.append(self._increment_global_step(loss.block))
186
        return return_ops
Q
Qiao Longfei 已提交
187

Q
Qiao Longfei 已提交
188 189
    def minimize(self,
                 loss,
190
                 startup_program=None,
Q
Qiao Longfei 已提交
191 192
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
193 194
        """Add operations to minimize `loss` by updating `parameter_list`.

195
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
196 197
        `create_optimization_pass()` into one.
        """
198 199
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set or
                                           set())
200 201
        # Add regularization if any 
        params_grads = append_regularization_ops(params_grads)
Q
Qiao Longfei 已提交
202
        optimize_ops = self.create_optimization_pass(params_grads, loss,
203
                                                     startup_program)
Q
Qiao Longfei 已提交
204 205 206 207 208 209 210
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

211
    def __init__(self, learning_rate, global_step=None):
Q
Qiao Longfei 已提交
212
        assert learning_rate is not None
213
        super(SGDOptimizer, self).__init__(global_step)
Q
Qiao Longfei 已提交
214 215 216
        self.type = "sgd"
        self._learning_rate = learning_rate

217
    def _initialize_tensors(self, block):
Q
Qiao Longfei 已提交
218
        lr_shape = [1]
219
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
220 221 222 223 224 225 226 227
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
Q
Qiao Longfei 已提交
228

229 230
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
231 232 233 234 235 236
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
237
                "LearningRate": self._lr
Q
Qiao Longfei 已提交
238
            },
239
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
240 241

        return sgd_op
242 243 244 245 246 247 248


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

249 250 251 252 253
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 global_step=None):
254 255
        assert learning_rate is not None
        assert momentum is not None
256
        super(MomentumOptimizer, self).__init__(global_step)
257 258 259
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
260
        self._use_nesterov = bool(use_nesterov)
261 262 263 264 265

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
266 267 268 269 270 271 272 273
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
274 275 276 277 278

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
279
            self._add_accumulator(self._velocity_acc_str, p)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._lr
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
299 300
            attrs={"mu": self._momentum,
                   "useNesterov": self._use_nesterov})
301 302

        return momentum_op
303 304 305 306 307 308 309


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

310
    def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None):
311 312
        assert learning_rate is not None
        assert epsilon is not None
313
        super(AdagradOptimizer, self).__init__(global_step)
314 315 316 317 318 319 320
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
321 322 323 324 325 326 327 328
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
329 330 331 332 333

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
334
            self._add_accumulator(self._moment_acc_str, p)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # create the adagrad optimizer op
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._lr
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
356 357 358 359 360 361 362 363 364 365 366 367


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
368 369
                 epsilon=1e-8,
                 global_step=None):
370 371 372 373
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
374
        super(AdamOptimizer, self).__init__(global_step)
375 376 377 378 379 380 381 382 383
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
384 385 386 387 388 389 390 391
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
392 393 394 395

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
396
        main_block = block.program.global_block()
397 398
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
            self._beta2_pow_acc, initializer=ConstantInitializer(self._beta2))
417 418 419

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
420 421
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
422 423 424 425 426 427 428 429

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
430
        # create the adam optimize op
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
459 460
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
461 462 463 464 465
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
466
        scale_beta2 = main_block.append_op(
467 468 469 470 471 472
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
473 474 475 476 477 478 479 480 481 482 483 484


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
485 486
                 epsilon=1e-8,
                 global_step=None):
487 488 489 490 491 492 493 494 495 496 497 498 499 500
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(AdamaxOptimizer, self).__init__()
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
501 502 503 504 505 506 507 508
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
509 510 511 512

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
513 514 515 516 517 518 519 520
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))
521 522 523

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
524 525
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
561 562
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
563 564 565 566 567 568
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]