optimizer.py 17.6 KB
Newer Older
Q
Qiao Longfei 已提交
1
import paddle.v2.framework.framework as framework
2
from collections import defaultdict
Q
Qiao Longfei 已提交
3

4 5 6
__all__ = [
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer'
]
Q
Qiao Longfei 已提交
7 8 9 10 11 12


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
13 14
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
15 16 17
    """

    def __init__(self):
18 19 20 21 22
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
23 24 25 26 27 28

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def _initialize_tensors(self, block):
        """Create all necessary tensors, that will be shared for all parameter updates.

        Tensors like learning rate should be initialized here.

        Args:
            block: the block in which the loss variable is present
        """
        pass

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
45
        """
46 47
        pass

48 49 50 51 52 53 54 55 56 57 58 59 60
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def _add_accumulator(self, block, name, param, dtype=None, fill_value=0.0):
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
            raise Exception("Accumulator {} already exists for parmeter {}".
                            format(name, param.name))
        global_block = block.program.global_block()
        param_shape = list(param.shape)
        param_acc = global_block.create_var(
            dtype=dtype, shape=param_shape, lod_level=0)

        # Initialize the accumulator with fill_value
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": param_acc},
            attrs={"shape": param_shape,
                   "value": fill_value})

        # Add to accumulators dict
        self._accumulators[name][param.name] = param_acc

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

    def create_backward_pass(self, loss, parameter_list=None, no_grad_set=None):
        """Create and add gradient Operators in BlockDesc to compute
        gradients of `loss` for parameters in parameter_list
Q
Qiao Longfei 已提交
111 112 113 114

        Args:
          loss: an variable generated by cost function.
          no_grad_set: variable that should not create gradient
115 116
          parameter_list: parameters that need to compute gradient and
          update to optimize the lost.
Q
Qiao Longfei 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

        Returns:
          list of (parameters, gradients) pair.
        """
        assert isinstance(loss, framework.Variable)
        param_grad_map = loss.block.program.append_backward(loss, no_grad_set or
                                                            set())
        if parameter_list is not None:
            parameters = parameter_list
        else:
            params = loss.block.program.global_block().all_parameters()
            parameters = [param.name for param in params]
        params_and_grads = []
        for param in parameters:
            if param not in param_grad_map:
                raise Exception("param %s is not in map" % param)
            grad_info = param_grad_map[param]
            grad_block = loss.block.program.block(grad_info[1])
            if not grad_block.has_var(grad_info[0]):
                raise Exception("grad block[%d] did not have grad var %s" %
                                grad_info[1], grad_info[0])
138 139
            # Get the param var from the global block
            param_var = loss.block.program.global_block().var(param)
Q
Qiao Longfei 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            grad_var = grad_block.var(grad_info[0])
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
        return params_and_grads

    def create_optimization_pass(self, parameters_and_grads, loss):
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
155 156 157 158
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
159
        """
160 161 162 163 164
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
165
        # for parameters and extend _finish_update method to add custom ops.
166 167 168 169 170 171 172

        # Create any accumulators
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])
        # Create any necessary tensors
        self._initialize_tensors(loss.block)

Q
Qiao Longfei 已提交
173 174 175 176 177 178
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is not None:
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
179

180 181 182 183 184 185 186 187 188 189 190
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

        return return_ops
Q
Qiao Longfei 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    def minimize(self, loss, parameter_list=None, no_grad_set=None):
        """Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `create_backward_pass()` and
        `create_optimization_pass()` into one.
        """
        params_grads = self.create_backward_pass(loss, parameter_list,
                                                 no_grad_set or set())
        optimize_ops = self.create_optimization_pass(params_grads, loss)
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

    def __init__(self, learning_rate):
        assert learning_rate is not None
210
        super(SGDOptimizer, self).__init__()
Q
Qiao Longfei 已提交
211 212 213
        self.type = "sgd"
        self._learning_rate = learning_rate

214
    def _initialize_tensors(self, block):
Q
Qiao Longfei 已提交
215 216
        assert isinstance(block, framework.Block)
        lr_shape = [1]
217 218 219
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)
Q
Qiao Longfei 已提交
220 221

        # create an op to init the learning_rate
222 223 224
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
Q
Qiao Longfei 已提交
225
            type="fill_constant",
226
            outputs={"Out": self._lr},
Q
Qiao Longfei 已提交
227 228 229
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

230 231 232
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
233 234 235 236 237 238
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
239
                "LearningRate": self._lr
Q
Qiao Longfei 已提交
240
            },
241
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
242 243

        return sgd_op
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

    def __init__(self, learning_rate, momentum):
        assert learning_rate is not None
        assert momentum is not None
        super(MomentumOptimizer, self).__init__()
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(block, self._velocity_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._lr
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={"mu": self._momentum})

        return momentum_op
302 303 304 305 306 307 308


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

K
Kexin Zhao 已提交
309
    def __init__(self, learning_rate, epsilon=1.0e-6):
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        assert learning_rate is not None
        assert epsilon is not None
        super(AdagradOptimizer, self).__init__()
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(block, self._moment_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # create the adagrad optimizer op
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._lr
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8):
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(AdamOptimizer, self).__init__()
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        global_block = block.program.global_block()
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
        # Create variables for beta1 and beta2 powers
        self._beta1_pow_acc = global_block.create_var(
            dtype="float32", shape=beta_shape, lod_level=0)
        self._beta2_pow_acc = global_block.create_var(
            dtype="float32", shape=beta_shape, lod_level=0)

        # Initialize beta1 and beta2 power accumulators
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": self._beta1_pow_acc},
            attrs={"shape": beta_shape,
                   "value": self._beta1})
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": self._beta2_pow_acc},
            attrs={"shape": beta_shape,
                   "value": self._beta2})

        # Create accumulator tensors for first and second moments
        for p in parameters:
            self._add_accumulator(block, self._moment1_acc_str, p, 'float32')
            self._add_accumulator(block, self._moment2_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        # create the momentum optimize op
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
        global_block = block.program.global_block()
        scale_beta1 = global_block.append_op(
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        scale_beta2 = global_block.append_op(
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]