optimizer.py 20.8 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

3 4
import paddle.v2.framework.framework as framework
from paddle.v2.framework.backward import append_backward_ops
5
from paddle.v2.framework.regularizer import append_regularization_ops
6

7
__all__ = [
8 9
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
    'AdamaxOptimizer'
10
]
Q
Qiao Longfei 已提交
11 12 13 14 15 16


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
17 18
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
19 20
    """

21 22
    def __init__(self, global_step=None):
        self._global_step = global_step
23 24 25 26 27
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
28 29 30 31 32 33

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def _initialize_tensors(self, block):
        """Create all necessary tensors, that will be shared for all parameter updates.

        Tensors like learning rate should be initialized here.

        Args:
            block: the block in which the loss variable is present
        """
        pass

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
50
        """
51 52
        pass

53 54 55 56 57 58 59 60 61 62 63 64 65
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def _add_accumulator(self, block, name, param, dtype=None, fill_value=0.0):
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
            raise Exception("Accumulator {} already exists for parmeter {}".
                            format(name, param.name))
        global_block = block.program.global_block()
        param_shape = list(param.shape)
        param_acc = global_block.create_var(
            dtype=dtype, shape=param_shape, lod_level=0)

        # Initialize the accumulator with fill_value
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": param_acc},
            attrs={"shape": param_shape,
                   "value": fill_value})

        # Add to accumulators dict
        self._accumulators[name][param.name] = param_acc

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
133 134 135 136 137 138 139 140
    def create_optimization_pass(self, parameters_and_grads, loss):
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
141 142 143 144
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
145
        """
146 147 148 149 150
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
151
        # for parameters and extend _finish_update method to add custom ops.
152 153 154 155 156 157 158

        # Create any accumulators
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])
        # Create any necessary tensors
        self._initialize_tensors(loss.block)

Q
Qiao Longfei 已提交
159 160 161 162 163 164
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is not None:
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
165

166 167 168 169 170 171 172 173 174 175
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

176 177
        if self._global_step is not None:
            return_ops.append(self._increment_global_step(loss.block))
178
        return return_ops
Q
Qiao Longfei 已提交
179 180 181 182

    def minimize(self, loss, parameter_list=None, no_grad_set=None):
        """Add operations to minimize `loss` by updating `parameter_list`.

183
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
184 185
        `create_optimization_pass()` into one.
        """
186 187
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set or
                                           set())
188 189
        # Add regularization if any 
        params_grads = append_regularization_ops(params_grads)
Q
Qiao Longfei 已提交
190 191 192 193 194 195 196 197
        optimize_ops = self.create_optimization_pass(params_grads, loss)
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

198
    def __init__(self, learning_rate, global_step=None):
Q
Qiao Longfei 已提交
199
        assert learning_rate is not None
200
        super(SGDOptimizer, self).__init__(global_step)
Q
Qiao Longfei 已提交
201 202 203
        self.type = "sgd"
        self._learning_rate = learning_rate

204
    def _initialize_tensors(self, block):
Q
Qiao Longfei 已提交
205 206
        assert isinstance(block, framework.Block)
        lr_shape = [1]
207 208 209
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)
Q
Qiao Longfei 已提交
210 211

        # create an op to init the learning_rate
212 213 214
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
Q
Qiao Longfei 已提交
215
            type="fill_constant",
216
            outputs={"Out": self._lr},
Q
Qiao Longfei 已提交
217 218 219
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

220 221 222
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
223 224 225 226 227 228
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
229
                "LearningRate": self._lr
Q
Qiao Longfei 已提交
230
            },
231
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
232 233

        return sgd_op
234 235 236 237 238 239 240


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

241 242 243 244 245
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 global_step=None):
246 247
        assert learning_rate is not None
        assert momentum is not None
248
        super(MomentumOptimizer, self).__init__(global_step)
249 250 251
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
252
        self._use_nesterov = bool(use_nesterov)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(block, self._velocity_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._lr
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
294 295
            attrs={"mu": self._momentum,
                   "useNesterov": self._use_nesterov})
296 297

        return momentum_op
298 299 300 301 302 303 304


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

305
    def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None):
306 307
        assert learning_rate is not None
        assert epsilon is not None
308
        super(AdagradOptimizer, self).__init__(global_step)
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(block, self._moment_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # create the adagrad optimizer op
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._lr
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
355 356 357 358 359 360 361 362 363 364 365 366


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
367 368
                 epsilon=1e-8,
                 global_step=None):
369 370 371 372
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
373
        super(AdamOptimizer, self).__init__(global_step)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        global_block = block.program.global_block()
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
        # Create variables for beta1 and beta2 powers
        self._beta1_pow_acc = global_block.create_var(
            dtype="float32", shape=beta_shape, lod_level=0)
        self._beta2_pow_acc = global_block.create_var(
            dtype="float32", shape=beta_shape, lod_level=0)

        # Initialize beta1 and beta2 power accumulators
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": self._beta1_pow_acc},
            attrs={"shape": beta_shape,
                   "value": self._beta1})
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": self._beta2_pow_acc},
            attrs={"shape": beta_shape,
                   "value": self._beta2})

        # Create accumulator tensors for first and second moments
        for p in parameters:
            self._add_accumulator(block, self._moment1_acc_str, p, 'float32')
            self._add_accumulator(block, self._moment2_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
434
        # create the adam optimize op
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
        global_block = block.program.global_block()
        scale_beta1 = global_block.append_op(
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        scale_beta2 = global_block.append_op(
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
477 478 479 480 481 482 483 484 485 486 487 488


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
489 490
                 epsilon=1e-8,
                 global_step=None):
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(AdamaxOptimizer, self).__init__()
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
        self._lr = block.create_var(
            dtype="float32", shape=lr_shape, lod_level=0)

        # create an op to init the learning_rate
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        block.append_op(
            type="fill_constant",
            outputs={"Out": self._lr},
            attrs={"shape": lr_shape,
                   "value": self._learning_rate})

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        global_block = block.program.global_block()
        # Create beta1 power accumulator tensor
        beta_shape = [1]
        self._beta1_pow_acc = global_block.create_var(
            dtype="float32", shape=beta_shape, lod_level=0)

        # Initialize beta1 power accumulator
        # FIXME: Fix when Initialization design has been implemented
        # https://github.com/PaddlePaddle/Paddle/pull/4852
        global_block.append_op(
            type="fill_constant",
            outputs={"Out": self._beta1_pow_acc},
            attrs={"shape": beta_shape,
                   "value": self._beta1})

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
            self._add_accumulator(block, self._moment_acc_str, p, 'float32')
            self._add_accumulator(block, self._inf_norm_acc_str, p, 'float32')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
        global_block = block.program.global_block()
        scale_beta1 = global_block.append_op(
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]