amp_auto_cast.cc 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
#include <memory>
#include <string>
J
Jiabin Yang 已提交
18
#include "paddle/fluid/eager/eager_tensor.h"
19
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
20 21
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
22 23 24 25

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
26 27
class VarBase;

L
Leo Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
  };
  PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0,
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

73 74
  auto phi_kernels = phi::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : phi_kernels) {
75
    auto op_type = phi::TransToFluidOpName(kernel_pair.first);
L
Leo Chen 已提交
76 77
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
78
          framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
L
Leo Chen 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

L
Leo Chen 已提交
102 103 104 105 106 107 108 109 110 111 112
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

113 114
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
115
      block_ops_(new std::unordered_set<std::string>()),
116 117
      unsupported_fp16_ops_(new std::unordered_set<std::string>()),
      unsupported_bf16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
119
  auto unsupported_ops_gpu_fp16 = std::get<2>(
L
Leo Chen 已提交
120
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
121 122 123 124 125 126
  unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(),
                                unsupported_ops_gpu_fp16.end());
  auto unsupported_ops_gpu_bf16 = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(),
                                unsupported_ops_gpu_bf16.end());
Q
qipengh 已提交
127
// NOTE: GPU/NPU/XPU/MLU is compiled seperatly.
L
Leo Chen 已提交
128
#elif defined(PADDLE_WITH_ASCEND_CL)
129
  auto unsupported_ops_npu_fp16 = std::get<2>(
L
Leo Chen 已提交
130
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
131 132 133 134 135 136
  unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(),
                                unsupported_ops_npu_fp16.end());
  auto unsupported_ops_npu_bf16 = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(),
                                unsupported_ops_npu_bf16.end());
L
Leo Chen 已提交
137
#elif defined(PADDLE_WITH_XPU)
138
  auto unsupported_ops_xpu_fp16 = std::get<2>(
L
Leo Chen 已提交
139
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
140 141 142 143 144 145
  unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(),
                                unsupported_ops_xpu_fp16.end());
  auto unsupported_ops_xpu_bf16 = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(),
                                unsupported_ops_xpu_bf16.end());
Q
qipengh 已提交
146 147 148 149 150 151 152 153 154
#elif defined(PADDLE_WITH_MLU)
  auto unsupported_ops_mlu_fp16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_mlu_fp16.begin(),
                                unsupported_ops_mlu_fp16.end());
  auto unsupported_ops_mlu_bf16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_mlu_bf16.begin(),
                                unsupported_ops_mlu_bf16.end());
L
Leo Chen 已提交
155 156
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
157 158
          << unsupported_fp16_ops_->size() << " "
          << unsupported_bf16_ops_->size();
159 160
}

161 162 163 164 165 166 167
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

168 169
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
170 171 172
  return allow_ops_;
}

173 174
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
175 176 177
  return block_ops_;
}

178 179 180 181 182
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

183 184 185 186 187
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedBf16Ops() {
  return unsupported_bf16_ops_;
}

188 189 190 191 192
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
  std::copy((*allow_ops).begin(), (*allow_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
193
  os << "\n";
194 195 196 197
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
  std::copy((*block_ops).begin(), (*block_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
198 199 200 201 202
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
  std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
203 204 205 206 207
  os << "\n";
  os << "unsupported bf16 ops: ";
  auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops();
  std::copy((*unsupported_bf16_ops).begin(), (*unsupported_bf16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
208 209 210
  return os;
}

J
Jiabin Yang 已提交
211 212 213
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
214
}
J
Jiabin Yang 已提交
215 216 217 218 219 220
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
F
furnace 已提交
221
      paddle::platform::is_xpu_place(place) ||
Q
qipengh 已提交
222
      paddle::platform::is_mlu_place(place) ||
F
furnace 已提交
223 224
      paddle::platform::is_npu_place(place) ||
      paddle::platform::is_npu_pinned_place(place)) {
L
Leo Chen 已提交
225
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
226
    if (data_type == paddle::framework::proto::VarType::FP32 ||
227 228
        data_type == paddle::framework::proto::VarType::FP16 ||
        data_type == paddle::framework::proto::VarType::BF16) {
L
Leo Chen 已提交
229 230
      return true;
    }
231
  }
L
Leo Chen 已提交
232
  return false;
233 234 235 236
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
237 238 239
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
240 241
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
242 243
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
244
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
245 246 247
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
248 249

  {
L
Leo Chen 已提交
250
    AutoCastGuard guard(tracer, AmpLevel::O0);
251 252 253 254 255
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
256 257 258
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
259
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
260
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
261 262 263 264 265
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
266 267 268
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
269
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
270
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
271 272 273 274 275
    return CastToType(var, dst_type);
  }
  return var;
}

276 277 278 279 280 281 282 283 284 285
template <typename VarType>
static inline std::shared_ptr<VarType> CastToBF16(
    const std::shared_ptr<VarType>& var) {
  auto dst_type = framework::proto::VarType::BF16;
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
286
template <typename VarType>
287
static inline framework::proto::VarType::Type GetPromoteType(
288 289 290
    const std::string& op_type, const NameVarMap<VarType>& ins,
    const framework::proto::VarType::Type amp_dtype) {
  auto dst_type = amp_dtype;
291 292
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
293 294
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
295 296 297 298
        break;
      }
    }
  }
C
cc 已提交
299 300 301 302 303 304

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
      if (pair.first == "X" &&
J
Jiabin Yang 已提交
305 306
          GetDataType<VarType>(pair.second.front()) ==
              framework::proto::VarType::FP16) {
C
cc 已提交
307 308 309 310 311
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

312 313 314
  return dst_type;
}

J
Jiabin Yang 已提交
315 316 317 318
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
319 320 321
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
322 323
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
324 325 326 327
          pair.first != "X") {
        continue;
      }

328 329 330 331 332 333 334 335
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

336 337
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
338
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
339
        var = CastToFP16<VarType>(var);
340 341 342
      }
    }
    return new_ins;
343 344
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    for (auto& pair : new_ins) {
345 346
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
347
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
348
        var = CastToFP32<VarType>(var);
349 350 351 352
      }
    }
    return new_ins;
  } else {
353 354
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::FP16);
C
cc 已提交
355

356 357 358 359 360 361
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
362 363
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
364 365
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
366 367 368
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
369 370 371 372 373 374 375 376
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
377 378 379
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
380
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
381 382 383
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
384 385 386 387
      }
    }
    return new_ins;
  }
388
  return new_ins;
389
}
J
Jiabin Yang 已提交
390 391
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
392 393
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
394 395 396 397
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
398 399 400 401 402 403
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
404 405 406 407 408 409 410
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

411 412 413 414 415
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
416 417 418 419 420 421 422
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
423 424 425 426
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
427 428 429
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
430 431 432 433
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
434 435
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
436 437
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
438 439 440 441 442 443 444 445 446 447 448 449 450 451

template <typename VarType>
NameVarMap<VarType> AutoCastBF16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16";
      for (auto& var : pair.second) {
        var = CastToBF16<VarType>(var);
      }
    }
    return new_ins;
452
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
453 454 455 456 457 458 459 460
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
      for (auto& var : pair.second) {
        var = CastToFP32<VarType>(var);
      }
    }
    return new_ins;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  } else {
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::BF16);
    // NOTE(zhangbo): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::BF16 &&
        AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
      for (auto& var : pair.second) {
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToBF16<VarType>(var));
      }
    }
    return new_ins;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  }
  return new_ins;
}
template NameVarMap<VarBase> AutoCastBF16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> AutoCastBF16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

template <typename VarType>
NameVarMap<VarType> CastPureBf16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  auto dst_type = framework::proto::VarType::BF16;
  if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToBF16<VarType>(var));
    }
  }
  return new_ins;
}
template NameVarMap<VarBase> CastPureBf16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> CastPureBf16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

515 516
}  // namespace imperative
}  // namespace paddle