amp_auto_cast.cc 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
#include <memory>
#include <string>
J
Jiabin Yang 已提交
18
#include "paddle/fluid/eager/eager_tensor.h"
19
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
20 21
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
22 23 24 25

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
26 27
class VarBase;

L
Leo Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
  };
  PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0,
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  auto pten_kernels = pten::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : pten_kernels) {
    auto op_type = pten::TransToFluidOpName(kernel_pair.first);
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
          framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

L
Leo Chen 已提交
102 103 104 105 106 107 108 109 110 111 112
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

113 114
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
115 116
      block_ops_(new std::unordered_set<std::string>()),
      unsupported_fp16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  auto unsupported_ops_gpu = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_gpu.begin(),
                                unsupported_ops_gpu.end());
// NOTE: GPU/NPU/XPU is compiled seperatly.
#elif defined(PADDLE_WITH_ASCEND_CL)
  auto unsupported_ops_npu = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_npu.begin(),
                                unsupported_ops_npu.end());
#elif defined(PADDLE_WITH_XPU)
  auto unsupported_ops_xpu = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_xpu.begin(),
                                unsupported_ops_xpu.end());
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
          << unsupported_fp16_ops_->size();
136 137
}

138 139 140 141 142 143 144
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

145 146
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
147 148 149
  return allow_ops_;
}

150 151
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
152 153 154
  return block_ops_;
}

155 156 157 158 159
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

160 161 162 163 164
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
  std::copy((*allow_ops).begin(), (*allow_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
165
  os << "\n";
166 167 168 169
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
  std::copy((*block_ops).begin(), (*block_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
170 171 172 173 174
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
  std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
175 176 177
  return os;
}

J
Jiabin Yang 已提交
178 179 180
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
181
}
J
Jiabin Yang 已提交
182 183 184 185 186 187 188
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
      paddle::platform::is_xpu_place(place)) {
L
Leo Chen 已提交
189
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
190 191
    if (data_type == paddle::framework::proto::VarType::FP32 ||
        data_type == paddle::framework::proto::VarType::FP16) {
L
Leo Chen 已提交
192 193
      return true;
    }
194
  }
L
Leo Chen 已提交
195
  return false;
196 197 198 199
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
200 201 202
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
203 204
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
205 206
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
207
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
208 209 210
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
211 212

  {
L
Leo Chen 已提交
213
    AutoCastGuard guard(tracer, AmpLevel::O0);
214 215 216 217 218
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
219 220 221
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
222
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
223
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
224 225 226 227 228
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
229 230 231
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
232
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
233
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
234 235 236 237 238
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
239
template <typename VarType>
240
static inline framework::proto::VarType::Type GetPromoteType(
J
Jiabin Yang 已提交
241
    const std::string& op_type, const NameVarMap<VarType>& ins) {
242 243 244
  auto dst_type = framework::proto::VarType::FP16;
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
245 246
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
247 248 249 250
        break;
      }
    }
  }
C
cc 已提交
251 252 253 254 255 256

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
      if (pair.first == "X" &&
J
Jiabin Yang 已提交
257 258
          GetDataType<VarType>(pair.second.front()) ==
              framework::proto::VarType::FP16) {
C
cc 已提交
259 260 261 262 263
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

264 265 266
  return dst_type;
}

J
Jiabin Yang 已提交
267 268 269 270
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
271 272 273
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
274 275
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
276 277 278 279
          pair.first != "X") {
        continue;
      }

280 281 282 283 284 285 286 287
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

288 289
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
290
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
291
        var = CastToFP16<VarType>(var);
292 293 294
      }
    }
    return new_ins;
295 296
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    for (auto& pair : new_ins) {
297 298
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
299
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
300
        var = CastToFP32<VarType>(var);
301 302 303 304
      }
    }
    return new_ins;
  } else {
J
Jiabin Yang 已提交
305
    auto dst_type = GetPromoteType<VarType>(op_type, ins);
C
cc 已提交
306

307 308 309 310 311 312
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
313 314
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
315 316
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
317 318 319
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
320 321 322 323 324 325 326 327
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
328 329 330
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
331
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
332 333 334
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
335 336 337 338
      }
    }
    return new_ins;
  }
339
  return new_ins;
340
}
J
Jiabin Yang 已提交
341 342
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
343 344
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
345 346 347 348
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
349 350 351 352 353 354
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
355 356 357 358 359 360 361
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

362 363 364 365 366
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
367 368 369 370 371 372 373
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
374 375 376 377
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
378 379 380
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
381 382 383 384
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
385 386
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
387 388
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
389 390
}  // namespace imperative
}  // namespace paddle