amp_auto_cast.cc 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
#include <memory>
#include <string>
J
Jiabin Yang 已提交
18
#include "paddle/fluid/eager/eager_tensor.h"
19
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
20 21
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
22 23 24 25

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
26 27
class VarBase;

L
Leo Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
  };
  PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0,
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

73 74
  auto phi_kernels = phi::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : phi_kernels) {
75
    auto op_type = phi::TransToFluidOpName(kernel_pair.first);
L
Leo Chen 已提交
76 77
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
78
          framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
L
Leo Chen 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

L
Leo Chen 已提交
102 103 104 105 106 107 108 109 110 111 112
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

113 114
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
115
      block_ops_(new std::unordered_set<std::string>()),
116 117
      unsupported_fp16_ops_(new std::unordered_set<std::string>()),
      unsupported_bf16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
119
  auto unsupported_ops_gpu_fp16 = std::get<2>(
L
Leo Chen 已提交
120
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
121 122 123 124 125 126
  unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(),
                                unsupported_ops_gpu_fp16.end());
  auto unsupported_ops_gpu_bf16 = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(),
                                unsupported_ops_gpu_bf16.end());
L
Leo Chen 已提交
127 128
// NOTE: GPU/NPU/XPU is compiled seperatly.
#elif defined(PADDLE_WITH_ASCEND_CL)
129
  auto unsupported_ops_npu_fp16 = std::get<2>(
L
Leo Chen 已提交
130
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
131 132 133 134 135 136
  unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(),
                                unsupported_ops_npu_fp16.end());
  auto unsupported_ops_npu_bf16 = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(),
                                unsupported_ops_npu_bf16.end());
L
Leo Chen 已提交
137
#elif defined(PADDLE_WITH_XPU)
138
  auto unsupported_ops_xpu_fp16 = std::get<2>(
L
Leo Chen 已提交
139
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
140 141 142 143 144 145
  unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(),
                                unsupported_ops_xpu_fp16.end());
  auto unsupported_ops_xpu_bf16 = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(),
                                unsupported_ops_xpu_bf16.end());
L
Leo Chen 已提交
146 147
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
148 149
          << unsupported_fp16_ops_->size() << " "
          << unsupported_bf16_ops_->size();
150 151
}

152 153 154 155 156 157 158
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

159 160
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
161 162 163
  return allow_ops_;
}

164 165
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
166 167 168
  return block_ops_;
}

169 170 171 172 173
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

174 175 176 177 178
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedBf16Ops() {
  return unsupported_bf16_ops_;
}

179 180 181 182 183
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
  std::copy((*allow_ops).begin(), (*allow_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
184
  os << "\n";
185 186 187 188
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
  std::copy((*block_ops).begin(), (*block_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
189 190 191 192 193
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
  std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
194 195 196 197 198
  os << "\n";
  os << "unsupported bf16 ops: ";
  auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops();
  std::copy((*unsupported_bf16_ops).begin(), (*unsupported_bf16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
199 200 201
  return os;
}

J
Jiabin Yang 已提交
202 203 204
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
205
}
J
Jiabin Yang 已提交
206 207 208 209 210 211
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
F
furnace 已提交
212 213 214
      paddle::platform::is_xpu_place(place) ||
      paddle::platform::is_npu_place(place) ||
      paddle::platform::is_npu_pinned_place(place)) {
L
Leo Chen 已提交
215
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
216
    if (data_type == paddle::framework::proto::VarType::FP32 ||
217 218
        data_type == paddle::framework::proto::VarType::FP16 ||
        data_type == paddle::framework::proto::VarType::BF16) {
L
Leo Chen 已提交
219 220
      return true;
    }
221
  }
L
Leo Chen 已提交
222
  return false;
223 224 225 226
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
227 228 229
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
230 231
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
232 233
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
234
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
235 236 237
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
238 239

  {
L
Leo Chen 已提交
240
    AutoCastGuard guard(tracer, AmpLevel::O0);
241 242 243 244 245
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
246 247 248
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
249
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
250
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
251 252 253 254 255
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
256 257 258
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
259
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
260
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
261 262 263 264 265
    return CastToType(var, dst_type);
  }
  return var;
}

266 267 268 269 270 271 272 273 274 275
template <typename VarType>
static inline std::shared_ptr<VarType> CastToBF16(
    const std::shared_ptr<VarType>& var) {
  auto dst_type = framework::proto::VarType::BF16;
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
276
template <typename VarType>
277
static inline framework::proto::VarType::Type GetPromoteType(
278 279 280
    const std::string& op_type, const NameVarMap<VarType>& ins,
    const framework::proto::VarType::Type amp_dtype) {
  auto dst_type = amp_dtype;
281 282
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
283 284
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
285 286 287 288
        break;
      }
    }
  }
C
cc 已提交
289 290 291 292 293 294

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
      if (pair.first == "X" &&
J
Jiabin Yang 已提交
295 296
          GetDataType<VarType>(pair.second.front()) ==
              framework::proto::VarType::FP16) {
C
cc 已提交
297 298 299 300 301
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

302 303 304
  return dst_type;
}

J
Jiabin Yang 已提交
305 306 307 308
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
309 310 311
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
312 313
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
314 315 316 317
          pair.first != "X") {
        continue;
      }

318 319 320 321 322 323 324 325
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

326 327
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
328
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
329
        var = CastToFP16<VarType>(var);
330 331 332
      }
    }
    return new_ins;
333 334
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    for (auto& pair : new_ins) {
335 336
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
337
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
338
        var = CastToFP32<VarType>(var);
339 340 341 342
      }
    }
    return new_ins;
  } else {
343 344
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::FP16);
C
cc 已提交
345

346 347 348 349 350 351
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
352 353
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
354 355
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
356 357 358
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
359 360 361 362 363 364 365 366
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
367 368 369
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
370
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
371 372 373
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
374 375 376 377
      }
    }
    return new_ins;
  }
378
  return new_ins;
379
}
J
Jiabin Yang 已提交
380 381
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
382 383
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
384 385 386 387
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
388 389 390 391 392 393
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
394 395 396 397 398 399 400
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

401 402 403 404 405
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
406 407 408 409 410 411 412
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
413 414 415 416
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
417 418 419
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
420 421 422 423
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
424 425
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
426 427
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
428 429 430 431 432 433 434 435 436 437 438 439 440 441

template <typename VarType>
NameVarMap<VarType> AutoCastBF16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16";
      for (auto& var : pair.second) {
        var = CastToBF16<VarType>(var);
      }
    }
    return new_ins;
442
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
443 444 445 446 447 448 449 450
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
      for (auto& var : pair.second) {
        var = CastToFP32<VarType>(var);
      }
    }
    return new_ins;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  } else {
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::BF16);
    // NOTE(zhangbo): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::BF16 &&
        AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
      for (auto& var : pair.second) {
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToBF16<VarType>(var));
      }
    }
    return new_ins;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  }
  return new_ins;
}
template NameVarMap<VarBase> AutoCastBF16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> AutoCastBF16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

template <typename VarType>
NameVarMap<VarType> CastPureBf16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  auto dst_type = framework::proto::VarType::BF16;
  if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToBF16<VarType>(var));
    }
  }
  return new_ins;
}
template NameVarMap<VarBase> CastPureBf16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> CastPureBf16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

505 506
}  // namespace imperative
}  // namespace paddle