amp_auto_cast.cc 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
#include <memory>
#include <string>
J
Jiabin Yang 已提交
18
#include "paddle/fluid/eager/eager_tensor.h"
19
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
20 21
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
22 23 24 25

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
26 27
class VarBase;

L
Leo Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
  };
  PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0,
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  auto pten_kernels = pten::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : pten_kernels) {
    auto op_type = pten::TransToFluidOpName(kernel_pair.first);
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
          framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

L
Leo Chen 已提交
102 103 104 105 106 107 108 109 110 111 112
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

113 114
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
115
      block_ops_(new std::unordered_set<std::string>()),
116 117
      unsupported_fp16_ops_(new std::unordered_set<std::string>()),
      unsupported_bf16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
119
  auto unsupported_ops_gpu_fp16 = std::get<2>(
L
Leo Chen 已提交
120
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
121 122 123 124 125 126
  unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(),
                                unsupported_ops_gpu_fp16.end());
  auto unsupported_ops_gpu_bf16 = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(),
                                unsupported_ops_gpu_bf16.end());
L
Leo Chen 已提交
127 128
// NOTE: GPU/NPU/XPU is compiled seperatly.
#elif defined(PADDLE_WITH_ASCEND_CL)
129
  auto unsupported_ops_npu_fp16 = std::get<2>(
L
Leo Chen 已提交
130
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
131 132 133 134 135 136
  unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(),
                                unsupported_ops_npu_fp16.end());
  auto unsupported_ops_npu_bf16 = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(),
                                unsupported_ops_npu_bf16.end());
L
Leo Chen 已提交
137
#elif defined(PADDLE_WITH_XPU)
138
  auto unsupported_ops_xpu_fp16 = std::get<2>(
L
Leo Chen 已提交
139
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
140 141 142 143 144 145
  unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(),
                                unsupported_ops_xpu_fp16.end());
  auto unsupported_ops_xpu_bf16 = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(),
                                unsupported_ops_xpu_bf16.end());
L
Leo Chen 已提交
146 147
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
148 149
          << unsupported_fp16_ops_->size() << " "
          << unsupported_bf16_ops_->size();
150 151
}

152 153 154 155 156 157 158
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

159 160
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
161 162 163
  return allow_ops_;
}

164 165
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
166 167 168
  return block_ops_;
}

169 170 171 172 173
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

174 175 176 177 178
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedBf16Ops() {
  return unsupported_bf16_ops_;
}

179 180 181 182 183
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
  std::copy((*allow_ops).begin(), (*allow_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
184
  os << "\n";
185 186 187 188
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
  std::copy((*block_ops).begin(), (*block_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
189 190 191 192 193
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
  std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
194 195 196 197 198
  os << "\n";
  os << "unsupported bf16 ops: ";
  auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops();
  std::copy((*unsupported_bf16_ops).begin(), (*unsupported_bf16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
199 200 201
  return os;
}

J
Jiabin Yang 已提交
202 203 204
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
205
}
J
Jiabin Yang 已提交
206 207 208 209 210 211 212
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
      paddle::platform::is_xpu_place(place)) {
L
Leo Chen 已提交
213
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
214
    if (data_type == paddle::framework::proto::VarType::FP32 ||
215 216
        data_type == paddle::framework::proto::VarType::FP16 ||
        data_type == paddle::framework::proto::VarType::BF16) {
L
Leo Chen 已提交
217 218
      return true;
    }
219
  }
L
Leo Chen 已提交
220
  return false;
221 222 223 224
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
225 226 227
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
228 229
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
230 231
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
232
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
233 234 235
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
236 237

  {
L
Leo Chen 已提交
238
    AutoCastGuard guard(tracer, AmpLevel::O0);
239 240 241 242 243
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
244 245 246
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
247
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
248
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
249 250 251 252 253
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
254 255 256
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
257
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
258
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
259 260 261 262 263
    return CastToType(var, dst_type);
  }
  return var;
}

264 265 266 267 268 269 270 271 272 273
template <typename VarType>
static inline std::shared_ptr<VarType> CastToBF16(
    const std::shared_ptr<VarType>& var) {
  auto dst_type = framework::proto::VarType::BF16;
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
274
template <typename VarType>
275
static inline framework::proto::VarType::Type GetPromoteType(
J
Jiabin Yang 已提交
276
    const std::string& op_type, const NameVarMap<VarType>& ins) {
277 278 279
  auto dst_type = framework::proto::VarType::FP16;
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
280 281
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
282 283 284 285
        break;
      }
    }
  }
C
cc 已提交
286 287 288 289 290 291

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
      if (pair.first == "X" &&
J
Jiabin Yang 已提交
292 293
          GetDataType<VarType>(pair.second.front()) ==
              framework::proto::VarType::FP16) {
C
cc 已提交
294 295 296 297 298
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

299 300 301
  return dst_type;
}

J
Jiabin Yang 已提交
302 303 304 305
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
306 307 308
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
309 310
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
311 312 313 314
          pair.first != "X") {
        continue;
      }

315 316 317 318 319 320 321 322
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

323 324
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
325
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
326
        var = CastToFP16<VarType>(var);
327 328 329
      }
    }
    return new_ins;
330 331
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    for (auto& pair : new_ins) {
332 333
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
334
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
335
        var = CastToFP32<VarType>(var);
336 337 338 339
      }
    }
    return new_ins;
  } else {
J
Jiabin Yang 已提交
340
    auto dst_type = GetPromoteType<VarType>(op_type, ins);
C
cc 已提交
341

342 343 344 345 346 347
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
348 349
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
350 351
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
352 353 354
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
355 356 357 358 359 360 361 362
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
363 364 365
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
366
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
367 368 369
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
370 371 372 373
      }
    }
    return new_ins;
  }
374
  return new_ins;
375
}
J
Jiabin Yang 已提交
376 377
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
378 379
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
380 381 382 383
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
384 385 386 387 388 389
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
390 391 392 393 394 395 396
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

397 398 399 400 401
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
402 403 404 405 406 407 408
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
409 410 411 412
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
413 414 415
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
416 417 418 419
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
420 421
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
422 423
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

template <typename VarType>
NameVarMap<VarType> AutoCastBF16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16";
      for (auto& var : pair.second) {
        var = CastToBF16<VarType>(var);
      }
    }
    return new_ins;
  } else {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
      for (auto& var : pair.second) {
        var = CastToFP32<VarType>(var);
      }
    }
    return new_ins;
  }
  return new_ins;
}
template NameVarMap<VarBase> AutoCastBF16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> AutoCastBF16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

template <typename VarType>
NameVarMap<VarType> CastPureBf16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  auto dst_type = framework::proto::VarType::BF16;
  if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToBF16<VarType>(var));
    }
  }
  return new_ins;
}
template NameVarMap<VarBase> CastPureBf16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> CastPureBf16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

481 482
}  // namespace imperative
}  // namespace paddle