framework.py 63.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
33
    'get_var',
34
]
Y
Yu Yang 已提交
35

Q
qiaolongfei 已提交
36 37 38 39 40 41 42 43
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
44 45
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
46 47 48
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
49

50
def convert_np_dtype_to_dtype_(np_dtype):
51 52
    """
    Convert the data type in numpy to the data type in Paddle
53

54
    Args:
55
        np_dtype(np.dtype): the data type in numpy.
56

57 58
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
59 60

    """
61 62
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
63
        return core.VarDesc.VarType.FP32
64
    elif dtype == np.float64:
65
        return core.VarDesc.VarType.FP64
66
    elif dtype == np.float16:
67
        return core.VarDesc.VarType.FP16
68
    elif dtype == np.int32:
69
        return core.VarDesc.VarType.INT32
70
    elif dtype == np.int16:
71
        return core.VarDesc.VarType.INT16
72
    elif dtype == np.int64:
73
        return core.VarDesc.VarType.INT64
74
    elif dtype == np.bool:
75
        return core.VarDesc.VarType.BOOL
76 77
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
78 79
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
80 81 82 83 84
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
85 86 87
    """
    Check the data type is floating or not.
    Args:
88
        dtype(np.dtype|core.VarDesc.VarType): data type.
89 90 91 92 93
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
94
    if not isinstance(dtype, core.VarDesc.VarType):
95 96
        dtype = convert_np_dtype_to_dtype_(dtype)

97 98 99 100
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
101 102


Y
Yang Yang(Tony) 已提交
103
def _debug_string_(proto, throw_on_error=True):
104 105 106 107 108 109 110 111 112 113 114
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
115
    error_fields = list()
Y
Yang Yang(Tony) 已提交
116
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
117 118
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
119 120 121
    return proto.__str__()


Y
Yu Yang 已提交
122
class Variable(object):
123
    """
124 125 126 127
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
128

129 130
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
131

132
    Most of a Variable's member variables can be setted to be None. It mean 
133
    it is not available or will be specified later.
134 135

    Args:
136
        block(Block): The block that the variable belongs to.
137 138
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
139 140
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
141
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
142
            Some kinds of variable do not contain shape, just set it to None.
143 144 145
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
146
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
147
            series data.
148
            Default: None
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
171 172
    """

Y
Yu Yang 已提交
173 174
    def __init__(self,
                 block,
Y
Yu Yang 已提交
175
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
176 177 178 179
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
180
                 capacity=None,
Q
QI JUN 已提交
181
                 persistable=None,
F
fengjiayi 已提交
182
                 error_clip=None,
Y
Yu Yang 已提交
183
                 stop_gradient=False,
F
fengjiayi 已提交
184
                 is_data=False,
Y
Yu Yang 已提交
185
                 **kwargs):
Y
Yu Yang 已提交
186
        self.block = block
F
fengjiayi 已提交
187
        self.error_clip = error_clip
Y
Yu Yang 已提交
188 189

        if name is None:
Y
Yu Yang 已提交
190
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
191 192 193 194
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
195
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
196
            is_new_var = True
Y
Yu Yang 已提交
197

Y
Yu Yang 已提交
198 199 200 201 202 203 204 205
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
206
        if shape is not None:
Y
Yu Yang 已提交
207
            if is_new_var:
208
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
217
        if dtype is not None:
218
            if not isinstance(dtype, core.VarDesc.VarType):
219
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
220
            if is_new_var:
F
fengjiayi 已提交
221
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
222
            else:
F
fengjiayi 已提交
223
                old_dtype = self.dtype
Q
QI JUN 已提交
224
                if dtype != old_dtype:
Y
Yu Yang 已提交
225 226 227 228 229
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
230 231

        if lod_level is not None:
Y
Yu Yang 已提交
232
            if is_new_var:
233
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
234 235 236 237 238 239 240
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
241 242 243 244 245 246 247 248 249 250 251
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

252 253 254 255 256 257 258 259
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
260
        self.block.vars[name] = self
Y
Yu Yang 已提交
261
        self.op = None
Y
Yu Yang 已提交
262
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
263
        self.is_data = is_data
Y
Yu Yang 已提交
264

265
    def __str__(self):
Y
Yang Yang(Tony) 已提交
266 267
        return self.to_string(True)

F
update  
fengjiayi 已提交
268
    def to_string(self, throw_on_error, with_details=False):
269 270 271 272
        """
        Get debug string.

        Args:
273 274
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
275
            with_details(bool): more details about variables and parameters
276 277
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
278

279 280
        Returns:
            str: The debug string.
281
        """
F
update  
fengjiayi 已提交
282 283
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
284 285
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
286 287 288 289 290 291 292
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
293 294 295

    __repr__ = __str__

296
    def set_desc(self, input):
297 298 299 300 301 302 303 304 305
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
306 307
        self.desc = input

308 309 310 311
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
312 313 314 315
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
316 317
    @property
    def name(self):
318
        return self.desc.name()
Y
Yu Yang 已提交
319

T
typhoonzero 已提交
320 321 322 323
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
324 325 326
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
327
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
328 329

    @property
F
fengjiayi 已提交
330 331
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
332 333 334

    @property
    def lod_level(self):
335
        return self.desc.lod_level()
Y
Yu Yang 已提交
336

Y
Yu Yang 已提交
337 338 339 340
    @property
    def type(self):
        return self.desc.type()

341
    def set_error_clip(self, error_clip):
342 343 344 345 346 347 348 349 350
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
351 352
        self.error_clip = error_clip

Y
Yu Yang 已提交
353

F
fengjiayi 已提交
354 355 356
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
357

358 359
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
360 361 362 363 364 365 366 367 368 369
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
370 371 372 373
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
374 375 376 377 378 379 380 381 382
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
383
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
384 385 386 387 388 389
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
390 391 392 393 394 395 396 397
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
398 399
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
400 401
        return self.op_proto_map[type]

402 403 404 405 406 407 408
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
409

Y
Yu Yang 已提交
410
class Operator(object):
411
    """
412 413 414 415 416 417 418
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
419
        type(str): The type of operator. Default None.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
451
    """
452 453 454 455 456
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
457
        'channel_recv', 'select', 'gen_nccl_id'
458
    }
459

Y
Yu Yang 已提交
460 461
    def __init__(self,
                 block,
Y
Yu Yang 已提交
462
                 desc,
Y
Yu Yang 已提交
463 464 465 466
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
467

Y
Yu Yang 已提交
468
        self.block = block
Y
Yu Yang 已提交
469
        self.desc = desc
T
typhoonzero 已提交
470
        self.attrs = attrs
Y
yuyang18 已提交
471 472 473 474 475 476 477 478
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
479 480 481 482 483 484 485 486

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
487

F
fengjiayi 已提交
488 489 490 491 492
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
493
        self.desc.set_type(type)
F
fengjiayi 已提交
494
        proto = OpProtoHolder.instance().get_op_proto(type)
495

Y
Yang Yang(Tony) 已提交
496 497
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
498
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
499 500
                    return True
            return False
Q
QI JUN 已提交
501

Y
Yang Yang(Tony) 已提交
502 503 504 505 506 507 508
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
509 510 511 512
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
513 514
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
515 516 517
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
518 519 520 521
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
522
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
523 524
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
525

Y
Yu Yang 已提交
526
        if outputs is not None:
527 528 529 530 531 532 533
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
534 535
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
536 537
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
538

F
fengjiayi 已提交
539
            for out_proto in proto.outputs:
540 541 542 543
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
544 545
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
546 547 548 549 550 551
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
552

Y
yuyang18 已提交
553 554
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
555
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
556
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
557
                attr_name = attr.name
Y
yuyang18 已提交
558 559
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
560
                    continue
561 562
                attr_val = self.attrs[attr_name]
                if isinstance(attr_val, Block):
Y
yuyang18 已提交
563 564
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
565 566 567 568 569 570
                elif isinstance(attr_val, list) and attr_val and \
                      all(isinstance(v, Block) for v in attr_val):
                    self.desc.set_blocks_attr(attr_name,
                                              [v.desc for v in attr_val])
                elif isinstance(attr_val, core.BlockDesc) or \
                        isinstance(attr_val, core.ProgramDesc):
T
typhoonzero 已提交
571
                    self.desc.set_serialized_attr(
572
                        attr_name, attr_val.serialize_to_string())
Y
Yang Yang(Tony) 已提交
573
                else:
574
                    self.desc.set_attr(attr_name, attr_val)
575
        self.desc.check_attrs()
576
        if self.has_kernel(type):
Q
QI JUN 已提交
577
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
578
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
579

580 581 582
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
583
    def to_string(self, throw_on_error):
584
        """
585 586
        Get debug string.

587
        Args:
588 589
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
590

591 592
        Returns:
            str: The debug string.
593 594

        """
595 596
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
597 598 599 600
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
601 602 603

    __repr__ = __str__

F
fengjiayi 已提交
604 605 606 607 608
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
609
        """
610
        Get the input arguments according to the input parameter name.
611

612 613
        Args:
            name(str): The input parameter name.
614

615 616 617
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
618
        """
F
fengjiayi 已提交
619 620
        return self.desc.input(name)

T
typhoonzero 已提交
621
    def rename_input(self, old_name, new_name):
622 623 624 625 626 627 628 629 630 631
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
632 633 634
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
635 636 637 638 639 640 641 642 643 644
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
645 646
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
647 648 649 650
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
651 652 653 654 655 656 657 658
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
659
    def output(self, name):
660
        """
661
        Get output arguments by the output parameter name.
662

663 664
        Args:
            name(str): The output parameter name.
665

666 667 668
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
669
        """
F
fengjiayi 已提交
670 671 672 673 674 675
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

676 677 678 679 680 681 682 683
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
684
    def has_attr(self, name):
685
        """
686 687
        Whether this Operator has the attribute with name or not.

688
        Args:
689
            name(str): the attribute name.
690

691 692
        Returns:
            bool: True if has this attribute.
693 694

        """
F
fengjiayi 已提交
695 696 697
        return self.desc.has_attr(name)

    def attr_type(self, name):
698
        """
699
        Get the type of attribute by attribute's name.
700

701 702
        Args:
            name(str): the attribute name.
703

704 705
        Returns:
            core.AttrType: the attribute type.
706
        """
F
fengjiayi 已提交
707 708
        return self.desc.attr_type(name)

Y
yuyang18 已提交
709
    def set_attr(self, name, val):
710 711 712 713 714 715 716 717 718 719
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
720
        self.attrs[name] = val
Q
Qiyang Min 已提交
721 722
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
723 724 725
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
726 727 728 729 730
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
731

F
fengjiayi 已提交
732 733 734 735 736
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
737
        """
738 739
        Get the attribute by name.

740
        Args:
741
            name(str): the attribute name.
742

743 744
        Returns:
            bool|int|str|float|list: The attribute value. The return value
745 746
            can be any valid attribute type.
        """
F
fengjiayi 已提交
747
        return self.desc.attr(name)
Y
Yu Yang 已提交
748

F
fengjiayi 已提交
749
    def block_attr(self, name):
750
        """
751
        Get the block attribute by name.
752

753 754
        Args:
            name(str): the attribute name.
755

756 757
        Returns:
            int: the block index.
758
        """
F
fengjiayi 已提交
759
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
760

J
JiayiFeng 已提交
761
    def all_attrs(self):
F
fengjiayi 已提交
762
        """
763 764 765 766
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
767 768 769 770 771 772 773 774 775 776
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
777

Y
Yu Yang 已提交
778
class Block(object):
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
808
    def __init__(self, program, idx):
Y
Yu Yang 已提交
809
        self.desc = program.desc.block(idx)
810
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
811
        self.ops = list()  # operator list
Y
Yu Yang 已提交
812
        self.program = program
813
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
814

815
    def __str__(self):
Y
Yang Yang(Tony) 已提交
816 817
        return self.to_string(True)

F
fengjiayi 已提交
818 819
    def to_string(self, throw_on_error, with_details=False):
        """
820 821
        Get debug string.

F
fengjiayi 已提交
822 823
        Args:
            throw_on_error(bool): raise exception when self is not initialized
824
                when throw_on_error is True.
F
update  
fengjiayi 已提交
825
            with_details(bool): more details about variables and parameters
826 827
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
828

829 830
        Returns:
            str: The debug string.
F
fengjiayi 已提交
831 832 833 834
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
835
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
836 837 838
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
839
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
840
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
841
            for op in self.ops:
F
fengjiayi 已提交
842 843
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
844 845 846 847 848 849
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
850 851 852

    __repr__ = __str__

Y
Yu Yang 已提交
853 854
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
855
        return self.desc.parent
Y
Yu Yang 已提交
856

Y
Yu Yang 已提交
857 858 859 860 861
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
862 863 864 865 866 867 868 869 870
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
871 872
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
873 874
    @property
    def idx(self):
Y
Yu Yang 已提交
875
        return self.desc.id
Y
Yu Yang 已提交
876

Q
Qiao Longfei 已提交
877
    def var(self, name):
878 879 880 881 882 883 884 885 886 887 888 889 890
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
891
        if not isinstance(name, basestring):
892 893 894
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
895 896
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
897
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
898
        return v
Q
Qiao Longfei 已提交
899

F
fengjiayi 已提交
900
    def var_recursive(self, name):
901 902 903 904 905 906 907 908 909 910 911 912 913
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
940

Q
Qiao Longfei 已提交
941
    def all_parameters(self):
942 943 944 945 946
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
947

Y
Yu Yang 已提交
948
    def create_var(self, *args, **kwargs):
949
        var = Variable(block=self, *args, **kwargs)
950 951
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
952
        return var
Y
Yu Yang 已提交
953

Q
Qiao Longfei 已提交
954 955 956
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
957 958 959
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
960 961 962 963 964 965 966 967 968 969 970 971

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
972 973
        """
        if not self.has_var(name):
974
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
975 976
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
977
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
978 979 980 981 982 983 984
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
985
            var_type = "Variable"
T
wip  
typhoonzero 已提交
986 987 988 989
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
990
        orig_var_type = v.type
T
typhoonzero 已提交
991
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
992
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
993
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
994
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
995 996 997 998
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
999
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1000 1001 1002 1003 1004 1005 1006
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1007
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1008 1009
            var = Variable(
                self,
T
typhoonzero 已提交
1010
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1011 1012 1013 1014 1015 1016 1017 1018
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1019
        self.sync_with_cpp()
1020
        return var
T
typhoonzero 已提交
1021

1022 1023 1024 1025 1026
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1027 1028
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1029
        param = Parameter(global_block, *args, **kwargs)
1030 1031
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1032
        return param
Y
Yu Yang 已提交
1033

Y
Yu Yang 已提交
1034
    def append_op(self, *args, **kwargs):
1035 1036 1037 1038 1039 1040
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1041
        op_desc = self.desc.append_op()
1042
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1043 1044 1045
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1046
    def insert_op(self, index, *args, **kwargs):
1047 1048 1049 1050 1051 1052 1053 1054 1055
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1056 1057 1058 1059 1060 1061
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1062
    def remove_op(self, index):
1063 1064 1065 1066 1067 1068 1069 1070 1071
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1072 1073 1074 1075
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1076
    def slice_ops(self, start, end):
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1087
        return self.ops[start:end]
Y
Yancey1989 已提交
1088

Y
Yu Yang 已提交
1089
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1090 1091
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1092
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1093 1094
        return op

Q
Qiao Longfei 已提交
1095
    def sync_with_cpp(self):
1096
        """
1097 1098
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1099
        """
Q
Qiao Longfei 已提交
1100 1101 1102 1103 1104
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1105 1106 1107 1108 1109
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1110
        # sync operators from cpp
1111 1112 1113 1114
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1131 1132 1133 1134 1135

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1136
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1137 1138 1139 1140 1141 1142 1143

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1157 1158 1159 1160
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1161 1162
    def copy_param_info_from(self, other):
        """
1163 1164
        Copy the information of parameters from the other block.

1165
        Args:
1166 1167 1168 1169 1170
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1194
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1195
                error_clip=p.error_clip,
1196 1197 1198
                name=v.name)
            self.vars[new_p.name] = new_p

1199 1200 1201
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1202

1203 1204 1205 1206
        Args:
            var: the variable to be cloned.

        Returns:
1207
            Variable: the new  variable cloned from 'var' in current block.
1208 1209
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1210 1211 1212 1213 1214
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1215 1216 1217 1218 1219 1220
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1221 1222
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1223 1224 1225 1226 1227 1228 1229
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1230 1231
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1232
        return ret_var
1233

Y
Yu Yang 已提交
1234 1235

class Program(object):
D
dzhwinter 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1247
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1248 1249

    Returns:
Y
yuyang18 已提交
1250
        A empty program.
D
dzhwinter 已提交
1251 1252

    Examples:
Y
yuyang18 已提交
1253 1254 1255 1256 1257 1258
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1259 1260 1261

    """

1262 1263
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1264 1265
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1266
        self._seed = 0
Y
yuyang18 已提交
1267
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1268
        self._op_role_var = []
Y
yuyang18 已提交
1269 1270 1271

    @property
    def op_role(self):
Y
yuyang18 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1285 1286 1287 1288 1289 1290 1291 1292
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1293 1294 1295 1296 1297 1298 1299
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1300 1301 1302 1303
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1304
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1305 1306 1307

    @contextlib.contextmanager
    def optimized_guard(self, var):
Y
yuyang18 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
            var(Variable|str): The variable (name) to be optimized.

        Examples:

            >>> p, g = backward(...)
Y
yuyang18 已提交
1320
            >>> with program.optimized_guard(p):
Y
yuyang18 已提交
1321 1322
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1323 1324
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1325
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1326
        yield
Y
yuyang18 已提交
1327
        self._op_role_var = []
Y
yuyang18 已提交
1328
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1329

1330
    def __str__(self):
Y
yuyang18 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1340 1341
        return self.to_string(True)

F
fengjiayi 已提交
1342 1343 1344
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1345

F
fengjiayi 已提交
1346
        Args:
Y
yuyang18 已提交
1347 1348
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1349

Y
yuyang18 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1373

1374
    def get_desc(self):
Y
yuyang18 已提交
1375 1376 1377 1378 1379 1380 1381
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1382 1383
        return self.desc

1384
    def clone(self, for_test=False):
Y
yuyang18 已提交
1385 1386 1387
        """
        Create a new, duplicated program.

1388

Y
yuyang18 已提交
1389 1390 1391 1392
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1393

Y
yuyang18 已提交
1394 1395 1396 1397 1398
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please.
1399 1400

        Args:
Y
yuyang18 已提交
1401 1402
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1403

D
dzhwinter 已提交
1404
        Returns:
Y
yuyang18 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1458 1459
        """
        if for_test:
1460
            p = self.inference_optimize()
1461
        else:
1462
            p = Program()
1463
            p.desc = core.ProgramDesc(self.desc)
1464 1465 1466
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1467
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1468
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1469
        return p
1470

1471
    def prune(self, targets):
Y
yuyang18 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1487 1488 1489 1490 1491 1492
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1493 1494
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1495
                    # and we need to find the current op that generate this
1496 1497 1498 1499 1500 1501 1502 1503
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1504
                    t = t.op
1505 1506 1507 1508
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1509
                else:
1510 1511
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1512 1513 1514 1515 1516 1517 1518 1519

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1520
    def inference_optimize(self):
Y
yuyang18 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1532 1533
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1534
        res = Program()
1535 1536 1537 1538 1539 1540 1541
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1542 1543 1544 1545
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1546 1547
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1560 1561
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1562
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1563 1564
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1565

D
dzhwinter 已提交
1566 1567
    @property
    def random_seed(self):
Y
yuyang18 已提交
1568 1569 1570 1571 1572 1573
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1574 1575
        return self._seed

Q
qiaolongfei 已提交
1576 1577
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1578 1579 1580
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1581 1582
        return self.desc.num_blocks()

D
dzhwinter 已提交
1583 1584 1585 1586 1587 1588
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1589 1590
    def __repr__(self):
        return str(self)
1591

Y
Yu Yang 已提交
1592
    def global_block(self):
Y
yuyang18 已提交
1593 1594 1595
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1596 1597
        return self.blocks[0]

Q
Qiao Longfei 已提交
1598
    def block(self, index):
Y
yuyang18 已提交
1599 1600 1601 1602 1603 1604 1605 1606
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1607 1608
        return self.blocks[index]

Y
Yu Yang 已提交
1609
    def current_block(self):
Y
yuyang18 已提交
1610 1611 1612 1613
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1614 1615
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1616
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1627
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1628 1629 1630
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1631 1632 1633 1634 1635
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1636 1637 1638 1639 1640
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1641 1642
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1643
    def sync_with_cpp(self):
Y
yuyang18 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1654 1655 1656 1657 1658
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1659 1660
    def copy_param_info_from(self, other):
        """
1661
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1662

Y
yuyang18 已提交
1663 1664 1665
        Notes: This is a very low level API. Users should not invoke it
        directly.

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1681 1682 1683
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1684

Y
yuyang18 已提交
1685 1686 1687
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1705
    def list_vars(self):
Y
yuyang18 已提交
1706 1707 1708 1709 1710 1711
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1712 1713 1714 1715
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1716

Y
Yu Yang 已提交
1717
class Parameter(Variable):
1718 1719 1720 1721 1722 1723
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1724
    Relative to a general Variable, a Parameter has several its own
1725 1726
    member variables:

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1739 1740
    """

Y
Yu Yang 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1751 1752 1753

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1754 1755 1756 1757
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1758 1759
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1760
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1761

W
wanghaoshuang 已提交
1762
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1763

F
fengjiayi 已提交
1764 1765 1766
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1767 1768 1769
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1770

F
update  
fengjiayi 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1785
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1786 1787 1788 1789 1790
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1791 1792 1793 1794
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1795

Y
Yu Yang 已提交
1796
# program is a global instance.
Y
Yu Yang 已提交
1797 1798
_main_program_ = Program()
_startup_program_ = Program()
1799

1800

1801
def default_startup_program():
Y
Yu Yang 已提交
1802
    """
Y
yuyang18 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1812

Y
Yu Yang 已提交
1813 1814 1815
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1816
    return _startup_program_
1817

1818

1819
def default_main_program():
Y
Yu Yang 已提交
1820
    """
Y
yuyang18 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1830

Y
Yu Yang 已提交
1831 1832 1833
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1834
    return _main_program_
Y
Yu Yang 已提交
1835 1836 1837 1838 1839


def switch_main_program(program):
    """
    Switch the main program to a new program.
1840

Y
Yu Yang 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1855
    Switch the startup program to a new program
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1871 1872 1873
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1874

Y
Yu Yang 已提交
1875
    Examples:
Y
yuyang18 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1886

Y
Yu Yang 已提交
1887
    Examples:
Y
yuyang18 已提交
1888 1889 1890 1891 1892 1893

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1894

Y
Yu Yang 已提交
1895
    Args:
Y
yuyang18 已提交
1896
        main_program(Program): New main program inside `with` statement.
1897
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1911 1912 1913 1914


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1915 1916
    Get a variable by name from the global block of a program.
    
X
xuwei06 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1928
    assert isinstance(program, Program)
X
xuwei06 已提交
1929 1930

    return program.global_block().var(name)