partial_program.py 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20
from paddle.fluid import framework, backward, core, program_guard
21
from paddle.fluid.dygraph import layers
22
from paddle.fluid.dygraph.base import switch_to_static_graph
23
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
24
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
25 26
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
27 28
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
29
from paddle.fluid.contrib.mixed_precision.decorator import AutoMixedPrecisionLists
30 31
from paddle.fluid.contrib.mixed_precision.fp16_utils import rewrite_program, cast_model_to_fp16
from paddle.fluid.dygraph.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
32
import paddle.compat as cpt
W
wanghuancoder 已提交
33
from paddle import _C_ops
34

35 36 37 38 39 40 41 42 43

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
44
        self.__input_list = self.tolist()
45 46 47 48 49 50 51 52 53 54 55 56 57
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
58
        assert len(self.__input_list) == len(value_list)
59 60 61 62
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
63
        for idx, var in enumerate(self.__input_list):
64 65
            if isinstance(
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)):
66 67 68 69 70 71 72 73 74 75
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
76
            for var in self.__input_list:
77 78 79
                if not isinstance(
                        var,
                    (framework.Variable, core.VarBase, core.eager.Tensor)):
80 81
                    warning_types.add(type(var))
            if warning_types:
82
                logging_utils.warn(
83 84 85 86 87 88 89 90 91 92
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
93
        return self.__input_list[item]
94

95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


119
class PartialProgramLayer:
120 121 122 123 124
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
125 126 127
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
128 129 130 131 132 133 134 135 136 137 138 139
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

140 141 142 143 144
    def __init__(self,
                 main_program,
                 inputs,
                 outputs,
                 parameters=None,
145
                 **kwargs):
146
        super(PartialProgramLayer, self).__init__()
147 148
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
149
        self._params = parameters if parameters is not None else []
150

151 152 153
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

154
        self._origin_main_program = self._verify_program(main_program)
155 156 157
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
158
        # Set default mode to train
159
        self.training = True
160

161 162 163 164
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
165
        # For AMP training
166 167 168
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
            custom_black_list=custom_black_list)
169

170 171 172 173 174 175 176 177
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    @LazyInitialized
    def _infer_program(self):
        """
        Lazy initialized property of infer_program.
        """
        return self._clone_for_test(self._origin_main_program)

    @LazyInitialized
    def _train_program(self):
        """
        Lazy initialized property of train_program.
        """
        train_program = self._append_backward_desc(self._origin_main_program)
        # Note: Only set grad type once after initializing train program. So we
        # put it here.
        self._set_grad_type(self._params, train_program)

        return train_program

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    @LazyInitialized
    @switch_to_static_graph
    def _infer_amp_program(self):
        """
        Lazy initialized property of infer_amp_program.
        """
        infer_amp_program = self._origin_main_program.clone()
        with program_guard(infer_amp_program):
            rewrite_program(infer_amp_program, self._amp_list)

        return infer_amp_program

    @LazyInitialized
    def _train_amp_program(self):
        """
        Lazy initialized property of train_amp_program.
        """
214 215 216
        train_amp_program = self._append_backward_desc(self._infer_amp_program)
        self._set_grad_type(self._params, train_amp_program)
        return train_amp_program
217

218 219 220 221 222 223 224 225
    @LazyInitialized
    @switch_to_static_graph
    def _infer_pure_fp16_program(self):
        """
        Lazy initialized property of _infer_pure_fp16_program.
        """
        infer_pure_fp16_program = self._origin_main_program.clone()
        with program_guard(infer_pure_fp16_program):
226 227 228
            cast_model_to_fp16(infer_pure_fp16_program,
                               self._amp_list,
                               use_fp16_guard=False)
229 230 231 232 233 234 235 236

        return infer_pure_fp16_program

    @LazyInitialized
    def _train_pure_fp16_program(self):
        """
        Lazy initialized property of _train_pure_fp16_program.
        """
237 238 239 240
        train_pure_fp16_program = self._append_backward_desc(
            self._infer_pure_fp16_program)
        self._set_grad_type(self._params, train_pure_fp16_program)
        return train_pure_fp16_program
241

242 243 244 245
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

246 247 248 249 250 251 252 253
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

254 255
    @LazyInitialized
    def _train_program_id(self):
256 257 258 259 260
        program_id = _hash_with_id(self._train_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)

        return program_id
261

262 263 264 265 266 267 268 269
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)

        return program_id

270 271 272 273 274 275 276 277
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)

        return program_id

278 279 280 281 282 283 284 285 286 287 288 289
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    def prepare_gradient_aggregation(self, main_program, target_program):
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
        
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.SELECTED_ROWS
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
                    lambda x: any([
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
                    ]), enumerate(target_program.block(0).ops)))

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
            target_program.block(0).create_var(name=new_grad_name,
                                               type=var.type,
                                               dtype=var.dtype,
                                               shape=var.shape)
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
                outputs={"Out": var_grad_name})
            return None

        to_processed_vars = list(
            filter(_need_aggregation, self._outputs.tolist()))
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

358
    @switch_to_static_graph
359
    def _append_backward_desc(self, main_program):
360 361
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
362
        targets = []
363
        for out in self._outputs.tolist():
364 365 366 367 368 369
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

370 371
        self.prepare_gradient_aggregation(main_program, program)

372 373
        return program

374 375 376 377 378 379 380 381 382 383
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
384
            found_param = False
385
            for block in program.blocks:
386 387 388 389 390 391
                for op in block.ops:
                    if param.name in op.input_arg_names or param.name in op.output_arg_names:
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
392 393 394 395
                    break

        self._params = required_params

396 397 398 399 400 401
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
402
                    var_base = None
J
Jiabin Yang 已提交
403
                    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
404 405 406 407 408 409 410 411 412
                        var_base = core.VarBase(var_desc.dtype(),
                                                var_desc.shape(),
                                                var_desc.name(),
                                                var_desc.type(), False)
                    else:
                        var_base = core.eager.Tensor(var_desc.dtype(),
                                                     var_desc.shape(),
                                                     var_desc.name(),
                                                     var_desc.type(), False)
413
                    double_grads.append(var_base)
414
        return self._valid_vars(double_grads)
415

416
    def _get_end_op_index(self):
417 418 419 420 421
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
422
            infer_program = self.infer_program
423 424
        return infer_program.desc.block(0).op_size()

425 426
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
427

428
        attrs = [
429 430 431 432
            'global_block',
            self.program.desc.block(0), 'start_op_index', 0, 'end_op_index',
            self._get_end_op_index(), 'is_test', not self.training,
            'program_id', self.program_id
433 434 435 436 437
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
                ('cuda_graph_capture_mode', self._cuda_graph_capture_mode,
                 'cuda_graph_pool_id', self._cuda_graph_pool_id))
438 439 440

        self._cast_fp16_if_pure_fp16(in_vars)

441 442
        _C_ops.run_program(self._valid_vars(in_vars),
                           self._valid_vars(self._params),
X
xiongkun 已提交
443
                           self._valid_vars(out_vars), self._create_scope_vec(),
444
                           self._double_grads, self._cuda_graph_vec, *attrs)
445 446
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
447

448 449 450 451
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
452 453 454
                if (self.program.global_block().has_var(name)
                        and self.program.global_block().var(name).dtype
                        == paddle.float16):
455 456 457
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

458 459
    @property
    def program(self):
460
        if self.training:
461
            return self.train_program
462
        else:
463
            return self.infer_program
464

465 466
    @property
    def program_id(self):
467
        if self.training:
468 469 470 471 472 473
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
474
        else:
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
499

500 501 502 503 504
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
505 506
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
507 508
        # Convert variable into VarBase and feed in training data.
        input_vars = []
509
        expected_place = framework._current_expected_place()
510
        for i, value in enumerate(flatten_inputs):
511
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
512
                var = None
J
Jiabin Yang 已提交
513
                if not framework._in_eager_mode_:
514 515 516 517 518
                    var = core.VarBase(value=value,
                                       name=self._inputs[i].desc.name(),
                                       persistable=False,
                                       place=expected_place,
                                       zero_copy=True)
J
Jiabin Yang 已提交
519
                else:
520 521 522 523 524
                    var = core.eager.Tensor(value=value,
                                            name=self._inputs[i].desc.name(),
                                            persistable=False,
                                            place=expected_place,
                                            zero_copy=True)
J
Jiabin Yang 已提交
525
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
526 527 528 529 530 531 532
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
                        expected_place):
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
533 534
                else:
                    var = value
535
                var.name = self._inputs[i].desc.name()
536 537 538
            else:
                continue
            input_vars.append(var)
539

540 541 542
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

543 544
        def create_out(var_id):
            var = self._outputs[var_id]
545
            assert isinstance(var, framework.Variable)
546
            var_desc = var.desc
J
Jiabin Yang 已提交
547
            varbase = None
548 549 550 551

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
552
            if not framework._in_eager_mode_:
553
                var_base = core.VarBase(var_desc.dtype(), var_desc.shape(),
J
Jiabin Yang 已提交
554 555
                                        var_desc.name(), var_desc.type(), False)
            else:
556 557 558
                var_base = core.eager.Tensor(var_desc.dtype(), var_desc.shape(),
                                             var_desc.name(), var_desc.type(),
                                             False)
559
            out_varbase_map[var_desc.name()] = var_base
560 561 562 563 564 565
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
566

567
    def _create_scope_vec(self):
568
        # Hold forward variables
J
Jiabin Yang 已提交
569
        tmp_scope_vec = None
570
        inner_scope = core.Scope()
J
Jiabin Yang 已提交
571
        if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
572 573 574 575
            tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                         "program_out_scope",
                                         core.VarDesc.VarType.STEP_SCOPES, True)
            tmp_scope_vec.value().set_scope(inner_scope)
576 577
        else:
            tmp_scope_vec = [inner_scope]
578
        return tmp_scope_vec
579

580 581 582 583 584 585
    def _create_cuda_graph_vec(self):
        var = core.VarBase(core.VarDesc.VarType.FP32, [], "cuda_graph",
                           core.VarDesc.VarType.RAW, True)
        var.stop_gradient = True
        return var

586 587 588 589 590 591 592 593 594
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
595
        if outs is not None and len(outs) == 1:
596 597 598 599
            outs = outs[0]

        return outs

600 601 602 603
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

604
    def _is_no_value(self, var):
J
Jiabin Yang 已提交
605 606
        if isinstance(var,
                      (core.VarBase, core.eager.Tensor)) and var.shape == [1]:
607 608
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
609 610 611 612 613 614 615
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
616
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
617 618 619 620 621
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
622 623
                res = tuple(var for var in out_vars
                            if not self._is_no_value(var))
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

639
    def _set_grad_type(self, params, train_program):
640 641 642 643 644 645 646 647
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
648
            grad_var = train_program.desc.block(0).find_var(
649 650 651 652 653 654
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

655 656 657 658 659 660 661 662 663 664 665 666 667
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

668 669 670 671 672 673 674 675 676 677 678 679
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

680 681 682
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
683
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
684
                raise TypeError(
685 686
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'
                    .format(i, type(var)))
687
            param_and_buffer_names_set.add(var.name)
688 689

        for block in main_program.blocks:
690
            for name, var in six.iteritems(block.vars):
691
                if isinstance(var, framework.Parameter):
692
                    if name not in param_and_buffer_names_set:
693
                        raise ValueError(
694 695 696 697 698 699
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
700 701
                            % name)

702 703 704 705 706 707 708 709
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

710

711
def _create_fake_var():
712
    """
713
    Create a fake_var (force on CPU) to handle empty input or output
714
    """
J
Jiabin Yang 已提交
715
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
716 717 718 719 720
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]
    else:
721 722 723 724
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
725 726 727 728 729 730 731


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

732 733 734 735
    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters,
                               **concrete_program.kwargs)