partial_program.py 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17 18 19
import logging

from paddle.fluid import log_helper
20 21
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
22 23
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
24 25
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
26 27
import paddle.compat as cpt

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
_logger = log_helper.get_logger(
    __name__, logging.WARNING, fmt='%(asctime)s-%(levelname)s: %(message)s')


class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
        assert len(self.tolist()) == len(value_list)
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
        for idx, var in enumerate(self.tolist()):
            if isinstance(var, (framework.Variable, core.VarBase)):
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
            for var in self.tolist():
                if not isinstance(var, (framework.Variable, core.VarBase)):
                    warning_types.add(type(var))
            if warning_types:
                _logger.warning(
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
        return self.tolist()[item]

87 88 89 90 91 92 93

class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
94 95 96
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
97 98 99 100 101 102 103 104 105 106 107 108 109 110
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
111 112
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
113
        self._params = parameters if parameters is not None else []
114

115 116 117 118
        main_program = self._verify_program(main_program)
        self._infer_program = self._clone_for_test(main_program)
        self._train_program = self._append_backward_desc(main_program)

119 120 121
        self._set_grad_type(self._params)
        self._inner_scope = core.Scope()
        # Set default mode to train
122
        self.training = True
123

124 125 126 127 128 129 130 131 132 133 134 135
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

136
    @switch_to_static_graph
137 138
    def _append_backward_desc(self, main_program):
        program = main_program.clone()
139
        targets = []
140
        for out in self._outputs.tolist():
141 142 143 144 145 146 147 148
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
            for block in program.blocks:
                if param.name in block.vars:
                    required_params.append(param)
                    break

        self._params = required_params

166 167 168 169 170 171 172 173 174 175 176 177
    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)

        framework._dygraph_tracer().trace_op(
            type='run_program',
            inputs={
                'X': valid_vars(in_vars),
                'Params': valid_vars(self._params)
            },
            outputs={'Out': valid_vars(out_vars),
                     'OutScope': tmp_scope_vec},
            attrs={
178
                'global_block': self.program.desc.block(0),
179 180 181 182 183
                'start_op_index': 0,
                'end_op_index': self._infer_program.desc.block(0).op_size(),
                'is_test': not self.training
            })

184 185
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
186

187 188 189 190
    @property
    def program(self):
        return self._train_program if self.training else self._infer_program

191 192 193 194 195
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
196 197
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
198 199
        # Convert variable into VarBase and feed in training data.
        input_vars = []
200
        for i, value in enumerate(flatten_inputs):
201 202 203
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
204
                    name=self._inputs[i].desc.name(),
205 206 207 208 209
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
                var = value
210
                var.name = self._inputs[i].desc.name()
211 212 213
            else:
                continue
            input_vars.append(var)
214

215 216
        # Create VarBase to receive output data.
        out_vars = []
217 218 219
        for idx in self._outputs.var_ids:
            var = self._outputs[idx]
            assert isinstance(var, framework.Variable)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

235 236 237 238 239 240 241 242 243
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
244
        if outs is not None and len(outs) == 1:
245 246 247 248
            outs = outs[0]

        return outs

249 250 251 252
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def _is_no_value(self, var):
        if isinstance(var, core.VarBase):
            if var.shape == [1] and var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
        if isinstance(out_vars, core.VarBase):
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var))
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def _set_grad_type(self, params):
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
            grad_var = self._train_program.desc.block(0).find_var(
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

302 303 304 305 306 307 308 309 310 311 312 313 314
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

315 316 317 318 319 320 321 322 323 324 325 326
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

327 328 329 330
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
            if not isinstance(var, core.VarBase):
331
                raise TypeError(
332 333 334
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.
                    format(i, type(var)))
            param_and_buffer_names_set.add(var.name)
335 336 337 338

        for block in main_program.blocks:
            for name, var in block.vars.items():
                if isinstance(var, framework.Parameter):
339
                    if name not in param_and_buffer_names_set:
340 341 342 343 344 345 346 347
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)