partial_program.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17 18 19
import logging

from paddle.fluid import log_helper
20 21
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
22 23
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
24 25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
import paddle.compat as cpt

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
_logger = log_helper.get_logger(
    __name__, logging.WARNING, fmt='%(asctime)s-%(levelname)s: %(message)s')


class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
        assert len(self.tolist()) == len(value_list)
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
        for idx, var in enumerate(self.tolist()):
            if isinstance(var, (framework.Variable, core.VarBase)):
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
            for var in self.tolist():
                if not isinstance(var, (framework.Variable, core.VarBase)):
                    warning_types.add(type(var))
            if warning_types:
                _logger.warning(
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
        return self.tolist()[item]

86 87 88 89 90 91 92

class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
93 94 95
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
110 111
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
112 113 114 115 116 117 118
        self._params = parameters if parameters is not None else []
        # Check all params from main program can be found in self._params:
        # 1. parameter in self._params should be type `framework.ParamBase` which are created in dygraph.
        # 2. parameter from transformed program shall be found in self._params.
        #    Because they share same data with ParamBase of original dygraph.
        self._check_params_all_inited(main_program)

119 120 121 122 123 124 125 126 127 128 129 130 131
        self._infer_program = main_program
        self._train_program = self._append_backward_desc()
        # Switch infer or train by train() and eval()
        self._trace_program = None
        self._set_grad_type(self._params)
        self._inner_scope = core.Scope()
        # Set default mode to train
        self.train()

    @switch_to_static_graph
    def _append_backward_desc(self):
        program = self._infer_program.clone()
        targets = []
132
        for out in self._outputs.tolist():
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

    def train(self):
        # self.training is inherited from layers.Layer
        self.training = True
        self._trace_program = self._train_program

    def eval(self):
        self.training = False
        self._trace_program = self._infer_program

    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)

        framework._dygraph_tracer().trace_op(
            type='run_program',
            inputs={
                'X': valid_vars(in_vars),
                'Params': valid_vars(self._params)
            },
            outputs={'Out': valid_vars(out_vars),
                     'OutScope': tmp_scope_vec},
            attrs={
                'global_block': self._trace_program.desc.block(0),
                'start_op_index': 0,
                'end_op_index': self._infer_program.desc.block(0).op_size(),
                'is_test': not self.training
            })

168
        return self._restore_out(out_vars)
169 170 171 172 173 174

    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
175 176
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
177 178
        # Convert variable into VarBase and feed in training data.
        input_vars = []
179
        for i, value in enumerate(flatten_inputs):
180 181 182
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
183
                    name=self._inputs[i].desc.name(),
184 185 186 187 188
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
                var = value
189
                var.name = self._inputs[i].desc.name()
190 191 192
            else:
                continue
            input_vars.append(var)
193

194 195
        # Create VarBase to receive output data.
        out_vars = []
196 197 198
        for idx in self._outputs.var_ids:
            var = self._outputs[idx]
            assert isinstance(var, framework.Variable)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
        if len(outs) == 1:
            outs = outs[0]

        return outs

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def _set_grad_type(self, params):
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
            grad_var = self._train_program.desc.block(0).find_var(
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

        params_name_set = set()
        for i, param in enumerate(self._params):
            if not isinstance(param, framework.ParamBase):
                raise TypeError(
                    'Type of self._params[{}] in PartialProgramLayer should be framework.ParamBase, but received {}.'.
                    format(i, type(param)))
            params_name_set.add(param.name)

        for block in main_program.blocks:
            for name, var in block.vars.items():
                if isinstance(var, framework.Parameter):
                    if name not in params_name_set:
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)