optimizer.py 238.3 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
22

23
import paddle
Q
Qiao Longfei 已提交
24
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
25
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
26

27 28
from . import framework
from . import layers
29
from . import unique_name
30
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
31
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .regularizer import append_regularization_ops
37
from .dygraph import base as imperative_base
38
from .dygraph import no_grad
39
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
40 41 42
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
43
from functools import cmp_to_key
44
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
45
from .. import compat as cpt
46

47
__all__ = [
48 49 50 51
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
52
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
53 54
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
55
]
Q
Qiao Longfei 已提交
56 57 58 59 60 61


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
62 63
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
64 65
    """

66
    @imperative_base.no_grad
67 68 69 70
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
71
                 grad_clip=None,
72
                 name=None):
73
        # Because of the loop import, so place it in the function body
74
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
75 76
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
77
        self._name = name
L
lujun 已提交
78
        if framework.in_dygraph_mode():
79
            if not isinstance(learning_rate,
80
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
81
                raise TypeError(
82
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
83
                    % type(learning_rate))
84
            if self._parameter_list is None:
85 86 87
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
88 89 90 91 92 93 94 95
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
96
        else:
97
            if not isinstance(learning_rate,
98
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
99
                raise TypeError(
100
                    "learning rate should be float or LRScheduler, got %s here"
101
                    % type(learning_rate))
M
minqiyang 已提交
102

103 104 105 106 107
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
108
        self.regularization = regularization
109
        self._grad_clip = grad_clip
110
        self._learning_rate = learning_rate
D
dzhwinter 已提交
111 112
        # the learning rate type should be inferenced from loss
        self._dtype = None
113
        # each program should have a independent learning rate
114
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
115
        self._learning_rate_map = dict()
116
        if isinstance(self._learning_rate, framework.Variable):
117 118
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
119 120 121 122 123
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
124
        self.helper = None
125
        self._opti_name_list = []
H
hong 已提交
126
        self._accumulators_holder = {}
127
        self._param_device_map = dict()
H
hong 已提交
128 129 130 131

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
132 133
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
134 135 136

        Args: None
        Return:
T
tianshuo78520a 已提交
137
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
138 139 140 141 142
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
143 144 145 146 147 148

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
149 150

        '''
151
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
152 153 154 155 156
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
157
        if isinstance(self._learning_rate, LRScheduler):
158 159
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
160
        if isinstance(self._learning_rate, LearningRateDecay):
161 162 163 164
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
165 166 167
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

168 169
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
170

171
                state_dict['global_step'] = var_temp
H
hong 已提交
172 173 174
        return state_dict

    @framework.dygraph_only
175
    def set_state_dict(self, state_dict):
H
hong 已提交
176
        '''
T
tianshuo78520a 已提交
177
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
178 179 180 181 182 183 184 185

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
186

187 188
                import paddle
                import paddle.fluid as fluid
189 190 191

                paddle.disable_static()

192
                emb = paddle.nn.Embedding(10, 10)
193

194
                state_dict = emb.state_dict()
195
                fluid.save_dygraph(state_dict, "paddle_dy")
196

197
                scheduler = paddle.optimizer.lr.NoamDecay(	
198 199 200 201
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
202
                state_dict = adam.state_dict()
203
                fluid.save_dygraph(state_dict, "paddle_dy")
204

205
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
206
        '''
207 208
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
209
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
210 211

        if isinstance(self._learning_rate, LearningRateDecay):
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
234 235 236 237 238 239

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
240
                var = var_tmp.value()
H
hong 已提交
241 242 243 244 245 246 247 248
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
249
                    load_para_np = load_para.numpy()
H
hong 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
265

266 267 268
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

269 270
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
271

Q
Qiao Longfei 已提交
272
    def _create_global_learning_rate(self):
273 274
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

297 298 299
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
300 301 302 303 304 305 306 307 308 309 310 311
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
312
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
313
            elif isinstance(self._learning_rate, LearningRateDecay):
314 315 316
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
317
                raise TypeError(
318 319
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
320
        else:
321 322 323 324
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
325 326 327 328 329 330
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
331

332 333 334 335 336 337 338 339
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

418 419 420
    @framework.dygraph_only
    def current_step_lr(self):
        """
421
        :api_attr: imperative
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
467
        if isinstance(current_lr, framework.Variable):
468 469 470 471
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
472 473 474
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
475 476 477 478 479 480 481
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
482
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
483 484 485 486
        """
        get global decayed learning rate
        :return:
        """
487 488
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
489
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
490

Q
Qiao Longfei 已提交
491 492 493 494 495
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

496 497 498 499
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
500 501
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
502
        else:
W
Wu Yi 已提交
503
            if param_lr == 1.0:
Y
yuyang18 已提交
504
                return self._global_learning_rate()
W
Wu Yi 已提交
505
            else:
X
Xin Pan 已提交
506 507 508
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
509
                    return self._global_learning_rate() * param_lr
510 511 512 513 514 515 516

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
517
        """
518 519
        pass

520
    def _finish_update(self, block, parameters_and_grads):
521 522 523 524 525 526 527 528
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
529
            None
530 531 532
        """
        pass

533 534 535 536 537
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
538
                         shape=None,
539
                         type=None,
540
                         device=None):
541 542 543 544 545 546 547 548 549
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
550 551
        if self._name is not None:
            name = self._name + "_" + name
552 553
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
554
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
555
                return self._accumulators[name][param.name]
556
            raise Exception("Accumulator {} already exists for parameter {}".
557
                            format(name, param.name))
558 559
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
560
        assert isinstance(self.helper, LayerHelper)
561 562 563 564 565

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
566
        var = self.helper.create_global_variable(
567
            name=var_name,
Q
Qiao Longfei 已提交
568
            persistable=True,
F
fengjiayi 已提交
569
            dtype=dtype or param.dtype,
570
            type=param.type if type is None else type,
H
hong 已提交
571 572
            shape=shape,
            belong_to_optimizer=True)
573 574 575 576 577
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
578 579 580 581 582 583 584

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
585
        self._accumulators[name][param.name] = var
586
        return var
587 588 589 590 591 592 593 594 595 596 597

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
598 599
        if self._name is not None:
            name = self._name + "_" + name
600 601 602 603 604 605
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

606 607 608 609 610 611 612 613 614 615 616 617
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
618
                        break
619 620 621 622 623 624 625

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

626
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
627 628 629
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
630
          parameters_and_grads(list(tuple(Variable, Variable))):
631
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
632 633

        Returns:
634
          return_op_list: a list of operators that will complete one step of
635 636 637
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
638
        """
639 640 641 642 643
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
644
        # for parameters and extend _finish_update method to add custom ops.
645

646
        # Allways called under program_guard use global block as loss block
647 648 649
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

650
        global_block = framework.default_main_program().global_block()
651 652 653 654 655 656 657 658 659
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
660
        self.helper = LayerHelper(self.__class__.__name__)
661
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
662
        self._create_accumulators(
663
            target_block,
C
chengduo 已提交
664
            [p[0] for p in parameters_and_grads if p[0].trainable])
665 666
        self._create_global_learning_rate()

M
minqiyang 已提交
667
        if framework.in_dygraph_mode():
668 669 670
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
671 672
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
673 674 675 676 677 678 679
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
680 681 682 683 684
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
685 686 687

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
688
        self._finish_update(target_block, parameters_and_grads)
689

690 691
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
692 693

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
694 695 696 697 698 699 700 701 702
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
703 704
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
720 721 722 723 724 725 726 727 728 729 730 731 732
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
733 734
        return new_param_grads, (table_param, table_grad), sgd_op

735 736 737 738 739 740 741
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
742
        The first part of ``minimize``, do auto-diff to append backward operations for
743 744 745
        the current program.

        Args:
746 747 748 749
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
750
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
751 752
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
753
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
754 755 756
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
757

758
        Return:
759 760
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
761

762
        Examples:
763
            See examples in ``apply_gradients``.
764
        """
765
        act_no_grad_set = None
L
Leo Chen 已提交
766
        if framework.in_dygraph_mode():
767
            pass
L
Leo Chen 已提交
768 769
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
770

C
chengduo 已提交
771
        self._dtype = loss.dtype
L
lujun 已提交
772
        if framework.in_dygraph_mode():
773 774 775
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
776
            params_grads = []
777
            for param in parameter_list:
C
chengduo 已提交
778 779
                if not param.trainable:
                    continue
780
                if param._grad_ivar() is not None:
C
chengduo 已提交
781
                    # create gradient variable
782
                    grad_var = param._grad_ivar()
C
chengduo 已提交
783
                    params_grads.append((param, grad_var))
784
        else:
C
chengduo 已提交
785 786 787 788 789
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
790 791 792 793
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
794 795
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
796 797
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
798
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
799
        return params_grads
800 801 802 803 804 805 806 807

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
808

809 810
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
811

812 813 814
        Examples:
            .. code-block:: python

815
                import paddle.fluid as fluid
816 817 818 819 820 821 822
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
823

824 825
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

826
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
827 828 829 830
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
831 832

        # Add regularization if any
833 834
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
835 836 837 838

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
839 840 841 842 843 844 845 846 847 848 849 850
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
851
        if framework.in_dygraph_mode():
C
chengduo 已提交
852 853
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
854 855
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
856 857
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
858 859 860 861 862 863 864
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
865
    def _get_no_grad_set(self, loss, no_grad_set=None):
866
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
867 868 869 870 871 872 873 874
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

875 876 877 878
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
879 880

        If not, new gradient will accumulat on previous gradient.
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

908
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
909 910
    def minimize(self,
                 loss,
911
                 startup_program=None,
Q
Qiao Longfei 已提交
912
                 parameter_list=None,
913
                 no_grad_set=None):
914
        """
915
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
916

917
        Args:
918 919 920 921
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
922
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
923 924
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
925
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
926
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
927

928
        Returns:
929 930 931
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
932 933 934
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
935 936 937

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
938
        """
C
chengduo 已提交
939
        assert isinstance(loss, Variable), "The loss should be an Variable."
940

941 942
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
943

C
chengduo 已提交
944 945 946 947 948
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
949

C
chengduo 已提交
950 951
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
952

Q
Qiao Longfei 已提交
953
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
954 955 956


class SGDOptimizer(Optimizer):
957
    r"""
Q
qiaolongfei 已提交
958 959 960 961 962 963
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

964 965 966
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
967
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
968 969
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
970 971 972 973 974
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
975 976 977 978
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
979 980
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
981 982 983 984

    Examples:
        .. code-block:: python

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1010 1011
    """

1012 1013 1014 1015
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1016
                 grad_clip=None,
1017
                 name=None):
Q
Qiao Longfei 已提交
1018
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1019
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1020
            learning_rate=learning_rate,
1021
            parameter_list=parameter_list,
X
Xin Pan 已提交
1022
            regularization=regularization,
1023
            grad_clip=grad_clip,
X
Xin Pan 已提交
1024
            name=name)
Q
Qiao Longfei 已提交
1025 1026
        self.type = "sgd"

1027
    @no_grad
1028
    def _append_optimize_op(self, block, param_and_grad):
1029
        lr = self._create_param_lr(param_and_grad)
1030
        if framework.in_dygraph_mode():
1031 1032 1033
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1034

1035
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1036 1037 1038 1039 1040 1041
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1042
                "LearningRate": lr
Q
Qiao Longfei 已提交
1043
            },
M
minqiyang 已提交
1044 1045
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1046 1047

        return sgd_op
1048 1049 1050


class MomentumOptimizer(Optimizer):
1051
    r"""
Q
qiaolongfei 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1065
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1066 1067 1068

        & else:

Q
qiaolongfei 已提交
1069
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1070

1071 1072 1073 1074
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1075
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1076 1077
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1078
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1079 1080 1081 1082 1083
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1084 1085 1086 1087
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1088 1089
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1090 1091 1092 1093

    Examples:
        .. code-block:: python

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1119 1120 1121
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1122 1123 1124
    def __init__(self,
                 learning_rate,
                 momentum,
1125
                 parameter_list=None,
X
Xin Pan 已提交
1126 1127
                 use_nesterov=False,
                 regularization=None,
1128
                 grad_clip=None,
X
Xin Pan 已提交
1129
                 name=None):
1130 1131
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1132
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1133
            learning_rate=learning_rate,
1134
            parameter_list=parameter_list,
X
Xin Pan 已提交
1135
            regularization=regularization,
1136
            grad_clip=grad_clip,
X
Xin Pan 已提交
1137
            name=name)
1138 1139
        self.type = "momentum"
        self._momentum = momentum
1140
        self._use_nesterov = bool(use_nesterov)
1141 1142 1143 1144 1145

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1146
            self._add_accumulator(self._velocity_acc_str, p)
1147 1148 1149 1150 1151 1152

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1153 1154 1155 1156 1157 1158 1159 1160
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1161

1162
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1163 1164 1165 1166
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1167
            "LearningRate": [lr]
1168 1169 1170 1171 1172 1173
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1174 1175 1176
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1177 1178 1179
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1180
            stop_gradient=True)
1181 1182

        return momentum_op
1183 1184


1185
class DGCMomentumOptimizer(Optimizer):
1186
    r"""
1187
	:api_attr: Static Graph
S
swtkiwi 已提交
1188

1189
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1190

G
gongweibao 已提交
1191
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1192 1193
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1194
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1195 1196 1197

    Eventually, these gradients become large enough to be transmitted.

1198
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1199

G
gongweibao 已提交
1200
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1201 1202 1203 1204

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1205

1206 1207
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1208

1209
        2. Call momentum to optimize the cost.
1210 1211

    Args:
1212 1213
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1214
        momentum (float): Momentum factor.
G
gongweibao 已提交
1215
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1216 1217 1218 1219 1220 1221 1222
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1223
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1224 1225
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1226
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1227 1228 1229 1230 1231
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1232 1233 1234
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1235 1236
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1237 1238 1239 1240

    Examples:
        .. code-block:: python

1241
            import paddle.fluid as fluid
1242
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1243 1244 1245 1246 1247
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1248 1249

    """
1250 1251
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1252 1253 1254 1255 1256 1257 1258

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1259
                 parameter_list=None,
1260 1261 1262
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1263
                 grad_clip=None,
1264
                 name=None):
Z
zhongpu 已提交
1265 1266
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1267 1268 1269 1270

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1271 1272 1273 1274
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1275
            parameter_list=parameter_list,
1276
            regularization=regularization,
1277
            grad_clip=grad_clip,
1278 1279 1280 1281
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1282

1283
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1284
        self._rampup_begin_step = rampup_begin_step
1285 1286
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1287

1288
        self._rampup_begin_step_var = None
1289
        self._global_step_var = None
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1302 1303

            self._num_trainers = num_trainers
1304
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1305

1306 1307
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1308

1309 1310 1311
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1312

1313 1314
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1315
            from .regularizer import L1Decay, L2Decay
1316 1317 1318 1319
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1320 1321
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1322
        return regular_type, regular_coeff
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1350 1351

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1352 1353 1354
            type = "momentum"
        else:
            type = "dgc_momentum"
1355 1356 1357 1358 1359
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1360
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1361 1362 1363

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1364 1365 1366 1367
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1368 1369 1370
            stop_gradient=True)
        return dgc_momentum_op

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1403 1404 1405 1406 1407 1408
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1409
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1410

1411 1412 1413
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1414 1415 1416 1417 1418
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1419
            name=core.dgc.kDGCRampUpBeginStepName(),
1420 1421 1422
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1423 1424
        self.helper = LayerHelper(self.__class__.__name__)

1425
        for param_var, grad_var in param_and_grads:
1426 1427 1428
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1429
            if not self._is_use_dgc(param_var, grad_var):
1430 1431
                continue

1432
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1433 1434 1435 1436 1437

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1438
                name=param_var.name + core.dgc.kDGCKName(),
1439 1440 1441 1442 1443 1444 1445
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1446
                name=param_var.name + core.dgc.kDGCEncodedName(),
1447 1448 1449
                value=0.0,
                force_cpu=False)

1450 1451 1452 1453 1454 1455 1456 1457
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1477 1478
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1479
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1480
                         encoded_var, gather_var)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1496 1497
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1498 1499 1500 1501 1502

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1503
            type="dgc_clip_by_norm",
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1516
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1517 1518

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1519
                encoded_var, gather_var):
1520 1521
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1522

1523 1524 1525 1526 1527 1528 1529
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1530 1531 1532 1533 1534 1535
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1536
                "Param": param_var,
1537 1538
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1539 1540 1541 1542 1543 1544
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1545 1546
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1547 1548 1549 1550 1551 1552
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1553
                "rampup_step": float(self._rampup_step),
1554 1555
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1556 1557 1558 1559 1560 1561 1562 1563
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1564
    @imperative_base.no_grad
1565
    def apply_gradients(self, params_grads):
1566 1567 1568 1569 1570
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1571 1572 1573 1574 1575 1576
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1577
        # DGC clip and regularization in optimizer.backward
1578 1579 1580 1581 1582 1583
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1584
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1585 1586 1587 1588 1589
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1604

1605
class LarsMomentumOptimizer(Optimizer):
1606
    r"""
1607 1608 1609 1610 1611 1612 1613 1614 1615
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1616
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1617 1618 1619

        & param = param - velocity

1620 1621 1622 1623 1624 1625
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1626
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1627 1628
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1629 1630 1631 1632 1633
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1634 1635 1636 1637
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1638 1639
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1640 1641 1642
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
        
1643 1644 1645
    Examples:
        .. code-block:: python

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1662 1663 1664 1665 1666 1667 1668 1669
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1670
                 parameter_list=None,
1671
                 regularization=None,
1672
                 grad_clip=None,
1673 1674 1675
                 name=None,
                 exclude_from_weight_decay=None,
                 epsilon=0):
1676 1677 1678 1679
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1680
            parameter_list=parameter_list,
1681
            regularization=regularization,
1682
            grad_clip=grad_clip,
1683 1684 1685 1686 1687
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1688 1689 1690 1691 1692
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1703 1704 1705 1706 1707 1708 1709 1710
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
1729 1730
                "lars_weight_decay": _lars_weight_decay,
                "epsilon": self._epsilon
M
minqiyang 已提交
1731 1732
            },
            stop_gradient=True)
1733 1734 1735 1736

        return momentum_op


1737
class AdagradOptimizer(Optimizer):
1738
    r"""
1739 1740
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1741

1742
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1743 1744 1745 1746 1747 1748 1749

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1750 1751 1752 1753 1754 1755
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1756 1757 1758
    for numerical stability to avoid the division by zero error.

    Args:
1759 1760 1761 1762
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1763
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1764 1765
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1766 1767 1768 1769 1770
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1771 1772 1773 1774
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1775 1776 1777 1778 1779
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1780 1781 1782 1783

    Examples:
        .. code-block:: python

1784
            import numpy as np
1785
            import paddle.fluid as fluid
1786 1787

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1788
            inp = fluid.data(name="inp", shape=[2, 2])
1789 1790
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1791
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1792 1793 1794 1795 1796 1797 1798
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1799 1800 1801
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1802 1803 1804
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1805
                 parameter_list=None,
X
Xin Pan 已提交
1806
                 regularization=None,
1807
                 grad_clip=None,
1808
                 name=None,
X
xuezhong 已提交
1809
                 initial_accumulator_value=0.0):
1810 1811
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1812
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1813
            learning_rate=learning_rate,
1814
            parameter_list=parameter_list,
X
Xin Pan 已提交
1815
            regularization=regularization,
1816
            grad_clip=grad_clip,
X
Xin Pan 已提交
1817
            name=name)
1818 1819
        self.type = "adagrad"
        self._epsilon = epsilon
1820
        self.initial_accumulator_value = initial_accumulator_value
1821 1822 1823 1824 1825

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1826 1827 1828 1829
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1830 1831 1832 1833 1834 1835

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1836
        # Create the adagrad optimizer op
1837 1838 1839 1840 1841 1842
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1843
                "LearningRate": self._create_param_lr(param_and_grad)
1844 1845 1846
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1847 1848
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1849 1850

        return adagrad_op
1851 1852 1853


class AdamOptimizer(Optimizer):
1854
    r"""
T
tianshuo78520a 已提交
1855
    The Adam optimizer uses an optimization described at the end
1856 1857 1858 1859 1860
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1875 1876
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1877
    Args:
1878 1879
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1880 1881
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1882
            The default value is 0.9.
1883 1884
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1885 1886 1887
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1888
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1889 1890
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1891 1892 1893 1894 1895
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1896 1897 1898 1899
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1910 1911 1912 1913

    Examples:
        .. code-block:: python

1914 1915 1916 1917 1918 1919
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1920 1921
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1955
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1984
                                                    beta1=beta1,
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1996 1997 1998
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1999 2000
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2001 2002 2003 2004 2005

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2006
                 epsilon=1e-8,
2007
                 parameter_list=None,
X
Xin Pan 已提交
2008
                 regularization=None,
2009
                 grad_clip=None,
Q
Qiao Longfei 已提交
2010
                 name=None,
Q
Qiao Longfei 已提交
2011
                 lazy_mode=False):
2012 2013 2014 2015
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2016
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2017
            learning_rate=learning_rate,
2018
            parameter_list=parameter_list,
X
Xin Pan 已提交
2019
            regularization=regularization,
2020
            grad_clip=grad_clip,
X
Xin Pan 已提交
2021
            name=name)
2022 2023 2024 2025
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2026
        self._lazy_mode = lazy_mode
2027 2028 2029 2030 2031 2032

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2033 2034
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
2035 2036 2037
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
2038 2039
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2040
                shape=[1],
2041
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
2042 2043 2044
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
2045 2046
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2047
                shape=[1],
2048
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2049 2050 2051 2052 2053 2054 2055 2056

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
2057 2058 2059 2060
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2061
        lr = self._create_param_lr(param_and_grad)
2062
        # create the adam optimize op
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2078
        inputs = {
2079 2080
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2081
            "LearningRate": [lr],
2082 2083 2084 2085
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2086 2087
        }
        outputs = {
2088 2089 2090 2091 2092
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2109 2110
        adam_op = block.append_op(
            type=self.type,
2111 2112 2113
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2114
            stop_gradient=True)
2115 2116 2117

        return adam_op

2118 2119

class AdamaxOptimizer(Optimizer):
2120
    r"""
2121 2122 2123 2124
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2125

2126
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2140
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2154
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2155 2156
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2157 2158 2159 2160 2161
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2162 2163 2164 2165
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2166 2167 2168 2169 2170 2171
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2172

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2186
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2187 2188
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2189
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2190 2191 2192 2193 2194 2195 2196 2197 2198
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2199 2200 2201
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2202
    _beta1_pow_acc_str = "beta1_pow_acc"
2203 2204 2205 2206 2207

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2208
                 epsilon=1e-8,
2209
                 parameter_list=None,
X
Xin Pan 已提交
2210
                 regularization=None,
2211
                 grad_clip=None,
X
Xin Pan 已提交
2212
                 name=None):
2213 2214 2215 2216
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2217
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2218
            learning_rate=learning_rate,
2219
            parameter_list=parameter_list,
X
Xin Pan 已提交
2220
            regularization=regularization,
2221
            grad_clip=grad_clip,
X
Xin Pan 已提交
2222
            name=name)
2223 2224 2225 2226 2227 2228 2229 2230
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2231 2232
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2233 2234 2235 2236 2237
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2238 2239 2240 2241 2242 2243 2244

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2245 2246
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2247 2248 2249 2250 2251 2252
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2253
                "LearningRate": self._create_param_lr(param_and_grad),
2254 2255
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2256
                "Beta1Pow": beta1_pow_acc
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2267 2268
            },
            stop_gradient=True)
2269 2270 2271

        return adamax_op

2272
    def _finish_update(self, block, parameters_and_grads):
2273 2274 2275
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2276
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2277
            if grad is None or param.trainable is False:
2278
                continue
X
Xin Pan 已提交
2279 2280
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2281 2282
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2283
                block.append_op(
2284 2285 2286
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2287 2288
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2289 2290


2291
class DpsgdOptimizer(Optimizer):
2292
    r"""
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2329
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2330 2331
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2332 2333 2334 2335 2336 2337 2338 2339
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2340 2341
                 sigma=1e-8,
                 parameter_list=None):
2342 2343 2344 2345
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2346 2347
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2348 2349 2350 2351
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2352 2353 2354 2355 2356 2357 2358
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2359 2360 2361 2362 2363

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2364 2365 2366
        if self._seed == None:
            self._seed = 0

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2378 2379
                "sigma": self._sigma,
                "seed": self._seed
2380 2381 2382 2383 2384 2385
            },
            stop_gradient=True)

        return dpsgd_op


2386
class DecayedAdagradOptimizer(Optimizer):
2387
    r"""
2388 2389 2390
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2391

2392
    The parameter ``param_out`` update rule with gradient ``grad``:
2393 2394 2395 2396 2397 2398 2399

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2400 2401 2402 2403
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2404 2405 2406
    stability to avoid the division by zero error.

    Args:
2407 2408 2409 2410 2411
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2412
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2413 2414
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2415 2416 2417 2418 2419
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2420 2421 2422 2423
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2424 2425 2426 2427 2428 2429
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2430 2431 2432 2433

    Examples:
        .. code-block:: python

2434 2435
            import paddle.fluid as fluid

2436 2437 2438 2439
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2440
            optimizer.minimize(cost)
2441 2442 2443
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2444 2445 2446 2447
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2448
                 parameter_list=None,
X
Xin Pan 已提交
2449
                 regularization=None,
2450
                 grad_clip=None,
X
Xin Pan 已提交
2451
                 name=None):
2452 2453 2454 2455
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2456
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2457
            learning_rate=learning_rate,
2458
            parameter_list=parameter_list,
X
Xin Pan 已提交
2459
            regularization=regularization,
2460
            grad_clip=grad_clip,
X
Xin Pan 已提交
2461
            name=name)
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2489 2490
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2491
            stop_gradient=True)
2492 2493

        return decayed_adagrad_op
2494 2495


2496
class AdadeltaOptimizer(Optimizer):
2497
    r"""
Z
Zeng Jinle 已提交
2498
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2499

Z
Zeng Jinle 已提交
2500
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2501 2502 2503
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2504

Z
Zeng Jinle 已提交
2505 2506
    .. math::

Z
Zeng Jinle 已提交
2507
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2508

Z
Zeng Jinle 已提交
2509
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2510

Z
Zeng Jinle 已提交
2511
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2512 2513

    Args:
Z
Zeng Jinle 已提交
2514 2515 2516
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2517
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2518 2519
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2520 2521 2522 2523 2524
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2525 2526 2527 2528
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2529 2530 2531
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2532 2533 2534 2535

    Examples:
        .. code-block:: python

2536
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2537

2538
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2539 2540
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2541 2542
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2543

Z
Zeng Jinle 已提交
2544 2545 2546 2547
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2548
    """
2549

2550 2551 2552
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2553 2554 2555 2556
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2557
                 parameter_list=None,
X
Xin Pan 已提交
2558
                 regularization=None,
2559
                 grad_clip=None,
X
Xin Pan 已提交
2560
                 name=None):
2561 2562 2563 2564 2565 2566
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2567
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2568
            learning_rate=learning_rate,
2569
            parameter_list=parameter_list,
X
Xin Pan 已提交
2570
            regularization=regularization,
2571
            grad_clip=grad_clip,
X
Xin Pan 已提交
2572
            name=name)
2573 2574 2575 2576 2577
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2578 2579
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2580 2581 2582 2583 2584 2585

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2586 2587
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2609 2610
                   "rho": self._rho},
            stop_gradient=True)
2611 2612 2613 2614

        return adadelta_op


Q
qingqing01 已提交
2615
class RMSPropOptimizer(Optimizer):
2616
    r"""
Q
qingqing01 已提交
2617 2618 2619 2620 2621 2622 2623 2624
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2625
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2626 2627 2628 2629

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2630
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2631 2632 2633 2634 2635 2636

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2637
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2653 2654 2655 2656
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2657
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2658 2659 2660 2661 2662
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2663 2664 2665
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2666
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2667
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2668
        momentum(float): :math:`\\beta` in equation is the momentum term,
2669
            default is 0.0.
2670 2671 2672 2673
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2674
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2675 2676
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2677 2678 2679 2680 2681
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2682 2683 2684 2685
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2686 2687
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2688 2689 2690 2691 2692 2693 2694

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2720 2721 2722 2723
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2724
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2725 2726 2727 2728 2729 2730

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2731
                 centered=False,
2732
                 parameter_list=None,
X
Xin Pan 已提交
2733
                 regularization=None,
2734
                 grad_clip=None,
X
Xin Pan 已提交
2735
                 name=None):
Q
qingqing01 已提交
2736
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2737
            learning_rate=learning_rate,
2738
            parameter_list=parameter_list,
X
Xin Pan 已提交
2739
            regularization=regularization,
2740
            grad_clip=grad_clip,
X
Xin Pan 已提交
2741
            name=name)
Q
qingqing01 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2755
        self._centered = centered
Q
qingqing01 已提交
2756 2757 2758 2759 2760 2761 2762 2763

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2764
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2774 2775
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2776 2777 2778 2779 2780 2781 2782
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2783
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2784 2785 2786 2787 2788
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2789 2790
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2791 2792 2793 2794
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2795 2796
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2797 2798
            },
            stop_gradient=True)
Q
qingqing01 已提交
2799 2800 2801 2802

        return rmsprop_op


Q
qiaolongfei 已提交
2803
class FtrlOptimizer(Optimizer):
2804
    r"""
Q
qiaolongfei 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2843 2844 2845 2846 2847
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2848
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2849 2850
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2851 2852 2853 2854 2855
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2856 2857 2858 2859
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2860 2861
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2862 2863 2864 2865 2866 2867 2868

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2893

2894
    NOTE:
C
chengduo 已提交
2895
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2896 2897 2898 2899 2900
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2901 2902 2903 2904 2905
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2906
                 parameter_list=None,
X
Xin Pan 已提交
2907
                 regularization=None,
2908
                 grad_clip=None,
X
Xin Pan 已提交
2909
                 name=None):
Q
qiaolongfei 已提交
2910
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2911
            learning_rate=learning_rate,
2912
            parameter_list=parameter_list,
X
Xin Pan 已提交
2913
            regularization=regularization,
2914
            grad_clip=grad_clip,
X
Xin Pan 已提交
2915
            name=name)
Q
qiaolongfei 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2955
                   "l2": self._l2,
M
minqiyang 已提交
2956 2957
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2958 2959 2960 2961

        return ftrl_op


Y
Yibing Liu 已提交
2962
class LambOptimizer(AdamOptimizer):
2963
    r"""
Y
Yibing Liu 已提交
2964 2965 2966 2967
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2968 2969
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2970 2971 2972 2973 2974

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2975
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2976

Y
Yibing Liu 已提交
2977
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2978

2979 2980 2981 2982
        m_t &= \\frac{m_t}{1 - \\beta_1^t}

        v_t &= \\frac{v_t}{1 - \\beta_2^t}

Y
Yibing Liu 已提交
2983
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2984

Y
Yibing Liu 已提交
2985
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2986 2987 2988 2989 2990 2991


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2992 2993 2994 2995 2996 2997 2998 2999
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3000
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3001 3002
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3003 3004 3005 3006 3007
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3008 3009
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
3010 3011 3012
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3013 3014 3015 3016 3017
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3018 3019 3020 3021 3022 3023

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3024
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3025 3026 3027
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3028 3029 3030 3031 3032
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3046
                 parameter_list=None,
Y
Yibing Liu 已提交
3047
                 regularization=None,
3048
                 grad_clip=None,
Y
Yibing Liu 已提交
3049
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3050 3051 3052 3053 3054 3055 3056 3057
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3058
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3059
            regularization=regularization,
3060
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3061 3062 3063 3064 3065 3066
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3067
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3068 3069 3070

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3071
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3082 3083 3084 3085 3086
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _, _, _, _ = core.ops.lamb(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'beta1', self._beta1,
                'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay',
                weight_decay)
            return None
Y
Yibing Liu 已提交
3097

Y
Yibing Liu 已提交
3098 3099 3100 3101 3102 3103
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
3104
                "LearningRate": lr,
Y
Yibing Liu 已提交
3105 3106 3107 3108 3109 3110 3111 3112
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
3113 3114 3115
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc
Y
Yibing Liu 已提交
3116 3117 3118 3119 3120
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3121
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3122 3123 3124 3125 3126 3127
            },
            stop_gradient=True)

        return lamb_op


3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3141
Dpsgd = DpsgdOptimizer
3142
DecayedAdagrad = DecayedAdagradOptimizer
3143
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3144
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3145
Ftrl = FtrlOptimizer
3146
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3147
Lamb = LambOptimizer
3148 3149 3150


class ModelAverage(Optimizer):
3151
    r"""
3152
	:api_attr: Static Graph
S
swtkiwi 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3182 3183

    Args:
3184 3185 3186
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3187 3188 3189 3190 3191
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3192 3193 3194
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3195

3196
    Examples:
Q
qiaolongfei 已提交
3197 3198 3199

      .. code-block:: python

3200 3201 3202 3203 3204 3205
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3206

3207 3208 3209 3210
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3211
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3212 3213 3214 3215 3216 3217 3218 3219
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3220
                                                         max_average_window=12500)
3221 3222

            exe.run(startup_program)
3223 3224 3225 3226 3227
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3228 3229

            # apply ModelAverage
3230
            with model_average.apply(exe):
3231 3232 3233 3234
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3235 3236 3237
    """

    def __init__(self,
W
wanghaoshuang 已提交
3238
                 average_window_rate,
3239 3240
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3241 3242
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3243 3244
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3245 3246
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3247 3248 3249
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3250

3251
        self.params_grads = []
3252 3253
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3254
            if param.do_model_average != False:
3255
                grad = param.block.create_var(
3256 3257
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3258 3259
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3260
                    stop_gradient=True)
3261
                self.params_grads.append((param, grad))
3262

3263
        for param, grad in self.params_grads:
3264 3265
            if grad is None:
                continue
X
Xin Pan 已提交
3266 3267
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3268
                self._append_average_accumulate_op(param)
3269

3270 3271 3272 3273
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3274
                self._add_average_apply_op(block, param_grad)
3275 3276 3277 3278 3279

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3280
                self._add_average_restore_op(block, param_grad)
3281

3282
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3283 3284 3285 3286 3287 3288
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3289
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3290
        old_num_accumulates = block._clone_variable(
3291
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3292
        num_updates = block._clone_variable(
3293 3294 3295 3296 3297 3298
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3299 3300 3301 3302
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3303
        ops._elementwise_div(x=sum, y=tmp, out=param)
3304 3305

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3306 3307
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3345 3346
            },
            stop_gradient=True)
3347

S
rename  
sneaxiy 已提交
3348
    @signature_safe_contextmanager
3349
    def apply(self, executor, need_restore=True):
3350 3351
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3352 3353

        Args:
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3398
        """
3399 3400 3401 3402 3403 3404
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3405 3406

    def restore(self, executor):
3407 3408
        """
        Restore ``Parameter`` values of current model.
3409 3410
        
        Args:
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3455
        """
3456
        executor.run(self.restore_program)
3457 3458 3459


class ExponentialMovingAverage(object):
3460
    r"""
3461
	:api_attr: Static Graph
S
swtkiwi 已提交
3462

3463 3464 3465 3466 3467 3468
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3469
        \\text{EMA}_0 & = 0
3470

3471 3472
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3473 3474 3475 3476
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3498 3499 3500


    Args:
Y
Yibing Liu 已提交
3501 3502 3503 3504 3505 3506 3507
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3508 3509 3510 3511 3512


    Examples:

	.. code-block:: python
3513 3514 3515 3516 3517

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3518
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3519 3520 3521 3522 3523 3524 3525 3526
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3527
	    global_steps = fluid.layers.autoincreased_step_counter()
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3557 3558
    """

3559
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3560 3561 3562
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3563
        self._decay = decay
3564
        self._thres_steps = thres_steps
3565
        self._name = name if name is not None else ''
3566 3567
        self._decay_var = self._get_ema_decay()

3568
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3569
        self._params_tmps = []
3570
        for param in default_main_program().global_block().all_parameters():
3571 3572 3573 3574 3575 3576 3577
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3578
                self._params_tmps.append((param, tmp))
3579

Y
Yibing Liu 已提交
3580 3581
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3582 3583
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3584
                self._ema_vars[param.name] = self._create_ema_vars(param)
3585 3586 3587 3588

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3589
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3590
            for param, tmp in self._params_tmps:
3591 3592
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3593
                ema = block._clone_variable(self._ema_vars[param.name])
3594
                layers.assign(input=param, output=tmp)
3595
                # bias correction
3596 3597
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
3598 3599 3600 3601
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
3602 3603 3604 3605

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3606
            for param, tmp in self._params_tmps:
3607 3608 3609 3610
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3633 3634 3635 3636 3637 3638 3639
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3640
        decay_var = block._clone_variable(self._decay_var)
3641 3642
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3643

Y
Yibing Liu 已提交
3644
    def _create_ema_vars(self, param):
3645 3646 3647 3648 3649 3650 3651 3652 3653
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3654 3655 3656 3657 3658
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3659 3660
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3661
        param_master_emas = []
Y
Yibing Liu 已提交
3662 3663 3664 3665
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3666
                if param.name + '.master' in self._ema_vars:
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3684

3685 3686 3687 3688 3689 3690 3691
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3692 3693
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3709 3710 3711


class PipelineOptimizer(object):
3712
    """
3713
	:api_attr: Static Graph
S
swtkiwi 已提交
3714

3715 3716 3717 3718
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3719

3720
    Args:
3721 3722 3723 3724
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3725 3726
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3727

3728
            import paddle.fluid as fluid
H
hutuxian 已提交
3729 3730
            import paddle.fluid.layers as layers

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3747
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3748
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3749
            optimizer.minimize(loss)
3750 3751 3752 3753 3754 3755 3756 3757 3758

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3759 3760
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3761 3762
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
3763
            exe.train_from_dataset(
3764
                    fluid.default_main_program())
3765
            data_loader.reset()
3766 3767
    """

3768
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3769 3770
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
3771
        if not isinstance(optimizer, Optimizer) and not isinstance(
3772 3773 3774
                optimizer, paddle.optimizer.Optimizer) and not isinstance(
                    optimizer, paddle.fluid.contrib.mixed_precision.decorator.
                    OptimizerWithMixedPrecision):
3775 3776 3777 3778
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
3779
        self._optimizer = optimizer
3780 3781 3782 3783
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
3784
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
3785
        self._start_cpu_core_id = start_cpu_core_id
3786 3787 3788 3789 3790 3791
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
3792
        self._param_device_map = None
H
hutuxian 已提交
3793

3794
    def _create_vars(self, block, ori_block):
3795
        # Create vars for block, copied from main_program's global block
H
hutuxian 已提交
3796 3797 3798 3799 3800
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
3801 3802 3803
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
3804 3805
                    continue
                used_var_set.add(var)
3806 3807
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
3808
                if source_var.type == core.VarDesc.VarType.READER:
3809 3810 3811 3812
                    block.create_var(
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
3813 3814
                else:
                    block._clone_variable(source_var, False)
H
hutuxian 已提交
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
    def _is_loss_grad_op(self, op):
        if self._op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self._op_role_key])
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Backward)

    def _is_optimize_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Optimize)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

3835
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
3836
        """
3837
        Split a program into sections according to devices that ops run on.
3838
        The ops of the role LRSched are copied to all sections.
3839 3840 3841

        Args:
            main_program (Program): the main program
3842
            devices: all used devices
H
hutuxian 已提交
3843
        """
3844 3845 3846
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
3847 3848 3849
        for device in devices:
            p = {'program': Program()}
            device_program_map[device] = p
3850

3851
        block = main_program.block(0)
3852 3853
        for op in block.ops:
            device = op.attr(self._op_device_key)
3854 3855 3856 3857 3858 3859 3860 3861
            op_role = op.attr(self._op_role_key)
            if int(op_role) & int(self._op_role.LRSched):
                # Copy ops of the role LRSched to all sections.
                for device in device_program_map.keys():
                    program = device_program_map[device]
                    op_desc = op.desc
                    ap_op = program["program"].block(0).desc.append_op()
                    ap_op.copy_from(op_desc)
3862 3863
                    # ap_op._set_attr(self._op_device_key, "")
            elif op.type == "create_py_reader" or op.type == "read" or op.type == "create_double_buffer_reader":
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
                # Copy read related ops to all section to make them exit after each epoch.
                for device in device_program_map.keys():
                    program = device_program_map[device]
                    op_desc = op.desc
                    ap_op = program["program"].block(0).desc.append_op()
                    ap_op.copy_from(op_desc)
            else:
                program = device_program_map[device]
                op_desc = op.desc
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
3875

3876
        for key in devices:
3877 3878 3879
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3880

3881
        return programs
H
hutuxian 已提交
3882

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

3895 3896 3897 3898 3899
    def _split_startup_program(self, startup_program, local_rank):
        block = startup_program.block(0)
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
3900 3901 3902 3903 3904 3905 3906 3907
            if device == "cpu":
                assert op.type == "fill_constant", (
                    "For ops in startup "
                    "program that with the op_device attribute of cpu, "
                    "they must be fill_constant.")
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

3908
            if device:
3909
                device_index = int(device.split(':')[1])
3910
            else:
3911 3912 3913
                # LR related ops
                device = None
            if device and device_index != local_rank: continue
3914 3915 3916 3917 3918
            op_desc = op.desc
            ap_op = new_startup_program.block(0).desc.append_op()
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
3919 3920
        self._create_vars(
            new_startup_program.block(0), startup_program.global_block())
3921 3922
        return new_startup_program

3923
    def _find_post_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3924
        """
3925 3926 3927 3928 3929 3930 3931
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
H
hutuxian 已提交
3932
        """
3933 3934
        post_op = []
        before = True
H
hutuxian 已提交
3935
        for op in ops:
3936 3937 3938 3939 3940 3941 3942 3943
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
3944
                    break
3945 3946 3947 3948 3949
        if post_op:
            return post_op[0]
        return None

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3950
        """
3951 3952 3953 3954 3955 3956 3957
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
3958
        """
3959
        prev_op = []
H
hutuxian 已提交
3960
        for op in ops:
3961 3962
            if op.type == 'send_v2' or op.type == 'recv_v2':
                continue
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=ref_var.desc.need_check_feed())
        return new_var

    def _get_data_var_info(self, block):
        """
4001
        Get info of all vars whose is_data attribute are true.
4002
        """
4003
        # map of data vars to devices that that data on
4004 4005 4006 4007
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
4008 4009 4010
                if "blocking_queue" in var_name: continue
                var = block.var(var_name)
                if not var.is_data:
4011 4012 4013 4014 4015
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
4016
        return data_devices_map
H
hutuxian 已提交
4017

4018 4019
    def _insert_sendrecv_for_data_var(self, main_block, programs, startup,
                                      devices):
4020
        """
4021
        Insert send and recv ops for data var that on other devices.
4022 4023 4024 4025 4026 4027 4028 4029

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
4030
        data_devices_map = self._get_data_var_info(main_block)
4031 4032 4033

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
4034 4035 4036 4037 4038
        insert_index = 0
        for op in first_block.ops:
            insert_index += 1
            if op.type == "read":
                break
4039
        first_dev_spec = devices[0]
4040
        first_dev_index = int(first_dev_spec.split(':')[1])
4041 4042
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
4043
                if device == first_dev_spec: continue
4044 4045 4046 4047
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
4048
                dev_index = int(device.split(':')[1])
4049
                first_block._insert_op(
4050 4051
                    index=insert_index,
                    type='send_v2',
4052 4053 4054
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        self._op_device_key: first_dev_spec,
4055 4056 4057
                        self._op_role_key: self._op_role.Forward,
                        'use_calc_stream': True,
                        'peer': dev_index,
4058 4059 4060 4061 4062 4063 4064
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
4065 4066 4067 4068
                for op in block.ops:
                    index += 1
                    if op.type == "read":
                        break
4069
                source_var = main_program.block(0).var(var_name)
4070
                new_var = self._create_var(block, source_var, var_name)
4071 4072
                block._insert_op(
                    index=index,
4073
                    type='recv_v2',
4074 4075
                    outputs={'Out': [new_var]},
                    attrs={
4076 4077
                        'out_shape': new_var.shape,
                        'dtype': new_var.dtype,
4078 4079
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
4080 4081
                        'peer': first_dev_index,
                        'use_calc_stream': True,
4082 4083 4084 4085 4086 4087 4088 4089
                    })

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4090

4091 4092 4093 4094 4095 4096 4097
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

    def _add_opdevice_attr_for_regularization_clip(self, block):
H
hutuxian 已提交
4098
        """
4099
        Add op_device attribute for regulization and clip ops.
H
hutuxian 已提交
4100
        """
4101 4102 4103
        for op in block.ops:
            # role for regularization and clip ops is optimize
            if int(op.attr(self._op_role_key)) != int(self._op_role.Optimize):
H
hutuxian 已提交
4104
                continue
4105 4106 4107 4108 4109 4110
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
4111
            param_name = op_role_var[0]
4112 4113
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
H
hutuxian 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
    def _add_default_opdevice_attr(self, block):
        """
        1. Add default op_device attribute for lr-related ops.
           The default value is the one that of the first place.
        2. Add default op_device attribute for sum ops added during
           backward. For these ops, we set the op_device attribute
           as the one of its post op, i.e, which op has the output of the
           sum op as an input.
        """
        first_devcie = ""

        # Get the device spec of the first place.
        # device_spec: 'cpu' for cpu device and 'gpu:id' for gpu device,
        # e.g. 'gpu:0', 'gpu:1', etc.
        for op in block.ops:
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                first_device = op.attr(self._op_device_key)
                break
        assert first_device
4135 4136
        first_device_type = first_device.split(":")[0]
        assert first_device_type == "gpu"
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

        # set op_device attr for lr-related ops
        lrsched_role = int(self._op_role.LRSched)
        for op in block.ops:
            if not op.has_attr(self._op_device_key) or (
                    op.attr(self._op_device_key) == ""):
                if op.type == "sum":
                    # For sum ops that compute the sum of @RENAMED@ vars
                    for name in op.desc.input_arg_names():
                        assert '@RENAME@' in name
                    assert len(op.desc.output_arg_names()) == 1
                    out_name = op.desc.output_arg_names()[0]
                    post_op = self._find_post_op(block.ops, op, out_name)
                    device = post_op.attr(self._op_device_key)
                    assert device
                    op._set_attr(self._op_device_key, device)
                    continue
H
hutuxian 已提交
4154

4155 4156 4157 4158
                assert op.attr(self._op_role_key) == lrsched_role, (
                    "Op whose op_device attr has not been set for pipeline"
                    " must be of the role LRSched.")
                op._set_attr(self._op_device_key, first_device)
H
hutuxian 已提交
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
    def _check_validation(self, block):
        """
        Check whether ops in a block are all validate (i.e., the 
        op_device attribute has been set).
        Then, return all device specifications in order.
        """
        device_specs = []
        for op in block.ops:
            type = op.type
            if not op._has_kernel(type):
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
            dev_spec = op.attr(self._op_device_key)
            assert dev_spec, ("op_device attribute for op "
                              "{} has not been set.".format(op.type))
4180 4181 4182
            dev_type = dev_spec.split(':')[0]
            assert dev_type == "gpu", ("Now only gpu devices are supported "
                                       "for pipeline parallelism.")
4183 4184 4185 4186
            if not dev_spec in device_specs:
                device_specs.append(dev_spec)
        return device_specs

4187
    def _insert_sendrecv_ops_for_boundaries(self, block):
4188
        """
4189
        Insert a pair of send and recv ops for every two
4190 4191 4192 4193 4194
        consecutive ops on different devices.
        """
        extra_index = 0

        # A map from var to device spec where op takes it as input,
4195
        # avoiding multiple send and recv ops.
4196 4197
        var_devspec = dict()

4198 4199 4200 4201 4202 4203 4204
        for index, op in enumerate(list(block.ops)):
            # skips lr-related ops and vars, as we will process them later.
            if int(op.attr(self._op_role_key)) & int(self._op_role.LRSched):
                continue
            # skips update ops and vars, as we will process them later.
            if self._is_update_op(op): continue

4205 4206 4207 4208
            cur_device_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
4209
                if not var_name in block.vars: continue
4210 4211 4212
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
4213
                prev_op = self._find_real_prev_op(block.ops, op, var_name)
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
                if prev_op is None:
                    continue
                prev_device_spec = prev_op.attr(self._op_device_key)

                if prev_device_spec != cur_device_spec:
                    if var_name not in var_devspec:
                        var_devspec[var_name] = []
                    if cur_device_spec in var_devspec[var_name]: continue
                    var_devspec[var_name].append(cur_device_spec)

                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
4226 4227
                    prev_device_index = int(prev_device_spec.split(':')[1])
                    cur_device_index = int(cur_device_spec.split(':')[1])
4228 4229
                    block._insert_op(
                        index=index + extra_index,
4230
                        type='send_v2',
4231 4232 4233
                        inputs={'X': var},
                        attrs={
                            self._op_device_key: prev_device_spec,
4234 4235 4236
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': cur_device_index,
4237 4238 4239 4240
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
4241
                        type='recv_v2',
4242 4243
                        outputs={'Out': [var]},
                        attrs={
4244 4245
                            'out_shape': var.shape,
                            'dtype': var.dtype,
4246
                            self._op_device_key: cur_device_spec,
4247 4248 4249
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': prev_device_index,
4250 4251 4252
                        })
                    extra_index += 1

4253 4254 4255 4256 4257 4258 4259 4260
    def _clear_gradients(self, main_block, dev_spec):
        """
        Clear gradients at the begining of each run of a minibatch.
        """
        for param_name in self._param_device_map:
            device = self._param_device_map[param_name]
            if device != dev_spec: continue
            grad_name = self._append_grad_suffix(param_name)
4261
            if not main_block.has_var(grad_name): continue
4262 4263 4264 4265 4266 4267
            grad_var = main_block.vars[grad_name]
            main_block._insert_op(
                index=0,
                type='fill_constant',
                inputs={},
                outputs={'Out': [grad_var]},
4268
                attrs={
4269 4270 4271
                    'shape': grad_var.shape,
                    'dtype': grad_var.dtype,
                    'value': float(0),
4272
                    self._op_device_key: device,
4273 4274
                    # a trick to run this op once per mini-batch
                    self._op_role_key: self._op_role.Optimize.LRSched,
4275 4276
                })

4277
    def _accumulate_gradients(self, block):
4278
        """
4279 4280
        Accumulate the gradients generated in microbatch to the one in mini-batch.
        We also scale the loss corresponding to number of micro-batches as well.
4281
        """
4282
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
            offset = index
            device = op.attr(self._op_device_key)

            # Backward pass
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Backward
                    })
                break
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.all_attrs()[self._op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
4308
                offset = index
4309 4310 4311
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
4312 4313 4314 4315
                    new_grad_var_name = unique_name.generate(grad_name)
                    new_var = self._create_var(block, grad_var,
                                               new_grad_var_name)
                    self._rename_arg(op, grad_name, new_grad_var_name)
4316 4317
                    block._insert_op(
                        index=offset + 1,
4318 4319 4320
                        type='sum',
                        inputs={'X': [grad_var, new_var]},
                        outputs={'Out': grad_var},
4321 4322
                        attrs={
                            self._op_device_key: device,
4323 4324
                            self._op_role_key: self._op_role.Backward,
                            self._op_role_var_key: op_role_var
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
                        })
                    offset += 1

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
4343
                self._create_vars(new_sub_block, origin_sub_block)
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
4365
                if var_name == "double_buffer_0": continue
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
4383 4384 4385
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
                        op.type == "read":
                        continue
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
4405
            write_dev_index = int(write_device.split(':')[1])
4406 4407 4408
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
4409 4410 4411
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
4412 4413 4414

                write_block._insert_op(
                    index=0,
4415
                    type='send_v2',
4416 4417 4418
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
4419
                        'use_calc_stream': True,
4420 4421
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
4422 4423
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
4424 4425 4426
                    })
                read_block._insert_op(
                    index=0,
4427
                    type='recv_v2',
4428 4429
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
4430 4431
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
4432
                        self._op_device_key: read_device,
4433
                        'use_calc_stream': True,
4434 4435 4436
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
4437
                        'peer': write_dev_index
4438
                    })
H
hutuxian 已提交
4439 4440 4441 4442 4443 4444

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4445 4446 4447 4448 4449
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
4450
        self._param_device_map = self._optimizer._param_device_map
4451 4452 4453 4454 4455

        # Step1: add default op_device attribute for regulization and clip ops
        self._add_opdevice_attr_for_regularization_clip(main_block)

        # Step2: add default op_device attribute for ops whose op_device
4456 4457
        # attribute have not been set yet. Then check all ops have the
        # op_device attribute.
4458 4459
        self._add_default_opdevice_attr(main_block)

4460
        device_specs = self._check_validation(main_block)
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

        sorted_device_spec = sorted(device_specs, key=cmp_to_key(device_cmp))
        assert sorted_device_spec == device_specs, (
            "With pipeline "
            "parallelism, you must use gpu devices one after another "
            "in the order of their ids.")
4477

4478 4479
        # Step3: add send and recv ops between section boundaries
        self._insert_sendrecv_ops_for_boundaries(main_block)
4480

4481 4482 4483 4484 4485
        # Step4: split program into sections and add pairs of
        # send and recv ops for data var.
        main_program = main_block.program
        program_list = self._split_program(main_program, device_specs)
        for p in program_list:
4486 4487
            self._create_vars(p["program"].block(0),
                              main_program.global_block())
4488 4489
        self._insert_sendrecv_for_data_var(main_block, program_list,
                                           startup_program, device_specs)
4490

4491
        # Step5: Special Case: process persistable vars that exist in
4492 4493 4494 4495
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

4496
        # Step6: Add sub blocks for section programs
4497 4498
        self._add_sub_blocks(main_block, program_list)

4499 4500 4501 4502
        assert (main_program._pipeline_opt and
                isinstance(main_program._pipeline_opt, dict) and
                'local_rank' in main_program._pipeline_opt), \
                "You must use pipeline with fleet"
4503 4504 4505 4506 4507 4508 4509
        local_rank = main_program._pipeline_opt['local_rank'] % len(
            device_specs)

        place_list = []
        for dev_spec in device_specs:
            dev_index = dev_spec.split(":")[1]
            place_list.append(core.CUDAPlace(local_rank))
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

        # Step7: Split startup program
        new_startup_program = self._split_startup_program(startup_program,
                                                          local_rank)

        # Step8: clear gradients before each mini-batch and 
        # accumulate gradients during backward
        self._clear_gradients(
            program_list[local_rank]['program'].global_block(),
            dev_spec=device_specs[local_rank])
        self._accumulate_gradients(program_list[local_rank]['program']
                                   .global_block())

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
4526 4527

        place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
4528
        main_program._pipeline_opt = {
H
hutuxian 已提交
4529 4530
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
4531 4532 4533
            "inner_parallelism": len(device_specs),
            "section_program": program_list[local_rank],
            "place": place_list[local_rank],
4534
            "place_id": place_id,
4535
            "sync_steps": -1,
L
lilong12 已提交
4536
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4537 4538
            "start_cpu_core_id": self._start_cpu_core_id,
        }
4539
        return optimize_ops, params_grads, program_list
M
mapingshuo 已提交
4540 4541


M
mapingshuo 已提交
4542 4543
class RecomputeOptimizer(Optimizer):
    """
4544
	:api_attr: Static Graph
S
swtkiwi 已提交
4545

M
mapingshuo 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
4606 4607
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
4608 4609
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
4610 4611
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
4612
        self.enable_offload = False
M
mapingshuo 已提交
4613 4614

    def _set_checkpoints(self, checkpoints):
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
4626 4627
        self._checkpoints = checkpoints

J
JZ-LIANG 已提交
4628 4629 4630 4631
    # should enable offload before calling backward 
    def _enable_offload(self):
        self.enable_offload = True

4632 4633
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
4634
        """
4635
	    :api_attr: Static Graph
S
swtkiwi 已提交
4636

M
mapingshuo 已提交
4637 4638 4639 4640
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
4641
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
4665 4666
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4704
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4705 4706 4707 4708
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4709
                    no_grad_set=None)
M
mapingshuo 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                })

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
                                op_role, kind):
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
            attrs={"dst_place_type": int(kind),
                   OP_ROLE_KEY: op_role})

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 2)

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 3)

    def _insert_sync_op(self, op_idx, checkpoint_name):
        # single stream offload no need sync 
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, to favor throughput        
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
                            # there is NO fetch ahead the first checkpoint 
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

                        # should check the current used checkpoint is ths last fetch one 
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] fetch op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, faster, less memory saving       
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

        for i, op in enumerate(self.block.ops[self.fw_strart_op_idx:
                                              self.bw_strart_op_idx]):

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
                            "There should be just ONE op that output checkpoint [{}]".
                            format(output_var))
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
            # record checkpoint usage  
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload_sync op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
            startup_program = fluid.default_startup_program()

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".
                format(self.checkpoint_shape))
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
                "all ele in checkpoints shape {} should be a determined integer larger than 0".
                format(self.checkpoint_shape))
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
5072 5073 5074 5075 5076
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
5077
                 callbacks=None):
M
mapingshuo 已提交
5078 5079 5080 5081 5082 5083 5084
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
5085 5086
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5111
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5112 5113 5114 5115
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5116
                    no_grad_set=None)
M
mapingshuo 已提交
5117 5118
                print("Finished backward")
        """
5119 5120
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
5121 5122 5123 5124 5125 5126 5127 5128

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
5129 5130 5131 5132 5133 5134 5135
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
5173
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
5174 5175 5176 5177 5178 5179 5180 5181
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5182
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5183 5184 5185 5186
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5187
                    no_grad_set=None)
M
mapingshuo 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
5202
                 no_grad_set=None):
5203
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
5204 5205 5206 5207 5208 5209 5210 5211 5212
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
5213
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
5214 5215 5216 5217 5218 5219 5220

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
5221
class LookaheadOptimizer(object):
5222
    r"""
5223
	:api_attr: Static Graph
S
swtkiwi 已提交
5224

M
mapingshuo 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
5250
            import numpy.random as random
M
mapingshuo 已提交
5251

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
            loss = fluid.layers.mean(x=loss)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
5268

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
5279 5280 5281 5282 5283

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
5284 5285
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

5337 5338 5339 5340 5341 5342 5343 5344
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
5345

5346 5347 5348 5349 5350 5351 5352
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
5353

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
5372 5373 5374 5375 5376
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
5390
        return mini_out
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

5448 5449
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
5465
        self._optimize_ops = None
5466

5467 5468 5469 5470 5471 5472
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

5473
    def backward(self,
5474 5475 5476
                 loss,
                 startup_program=None,
                 parameter_list=None,
5477 5478
                 no_grad_set=None,
                 callbacks=None):
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=True,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var,
                        'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var})

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
5606 5607

        #TODO(mapingshuo) support sparse embedding
5608 5609
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
5610
            assert (
5611
                param.type != core.VarDesc.VarType.SELECTED_ROWS
5612 5613
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

5614
            self._remove_op_role_var(param, grad)
5615

5616
        param_to_grad = {k.name: v for (k, v) in params_grads}
5617 5618 5619
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

5620 5621 5622 5623 5624
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
5625 5626 5627 5628 5629 5630 5631 5632
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
5633

5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
                inputs={'X': grad,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False
                        })
5679

5680 5681 5682 5683 5684 5685
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
5686

5687 5688
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
5689

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad)

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
5718 5719

        return optimize_ops, params_grads