fusion_gru_op.cc 15.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18 19
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
29
                 "Assert only one Input(WeightX) of GRU.");
30
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
31
                 "Assert only one Input(WeightH) of GRU.");
32 33
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
34
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

60
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
61 62 63 64
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
65
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
66 67 68 69 70
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
71 72
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
73 74 75
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
76
  int xx_width;
T
tensor-tang 已提交
77
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
78 79 80
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
81
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
82
                   "Assert only one Output(ReorderedH0) of GRU.");
83
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
84
                   "Assert only one Output(BatchedInput) of GRU.");
85
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
86
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
87 88
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
89
  }
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
92 93 94 95 96 97 98 99 100 101
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
102 103
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
104
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
105 106
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
107 108 109 110 111
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
112 113 114 115
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
116 117 118 119 120
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
121
  AddInput("Bias",
T
tensor-tang 已提交
122 123 124
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
125
      .AsDispensable();
T
tensor-tang 已提交
126 127
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
128
  AddOutput("XX",
T
tensor-tang 已提交
129
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
130 131 132
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
133
      .AsIntermediate();
T
tensor-tang 已提交
134 135 136 137
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
138
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
139
      .AsIntermediate();
T
tensor-tang 已提交
140
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
154 155 156 157
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
158 159 160 161 162 163 164
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
165
template <typename T>
T
tensor-tang 已提交
166 167
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
168
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
169
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
170 171 172 173 174 175
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

#define INIT_OTHER_DEFINES                                                     \
  auto* h0 = ctx.Input<Tensor>("H0");                                          \
  auto* wx = ctx.Input<Tensor>("WeightX");                                     \
  auto* bias = ctx.Input<Tensor>("Bias");                                      \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                          \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                              \
  const int M = x_dims[1];                                                     \
  const int D = wh_dims[0];                                                    \
  const int D2 = D * 2;                                                        \
  const auto& ker = math::jitkernel::KernelPool::Instance()                    \
                        .template Get<math::jitkernel::GRUKernel<T>,           \
                                      const std::string&, const std::string&>( \
                            ctx.Attr<std::string>("gate_activation"),          \
                            ctx.Attr<std::string>("activation"), D);           \
  const T* x_data = x->data<T>();                                              \
  const T* wx_data = wx->data<T>();                                            \
  const T* wh_data = wh->data<T>();                                            \
  auto place = ctx.GetPlace();                                                 \
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
205

T
tensor-tang 已提交
206 207
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
208 209
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
210
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
211
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
212
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
213
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
214 215
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
216 217
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
235
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
236 237 238 239
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
T
tensor-tang 已提交
240
        ker->ComputeH1(xx_data, hidden_out_data);
T
tensor-tang 已提交
241 242 243 244 245 246 247 248 249
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
T
tensor-tang 已提交
250
        ker->ComputeHtPart1(xx_data, prev_hidden_data, hidden_out_data);
T
tensor-tang 已提交
251 252 253 254
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
T
tensor-tang 已提交
255
        ker->ComputeHtPart2(xx_data, prev_hidden_data, hidden_out_data);
T
tensor-tang 已提交
256 257 258 259 260 261 262 263
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
264
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
265 266
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
267
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
268 269 270
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
271
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
272 273 274
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
275 276 277
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
278 279 280
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
281 282 283 284
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
285
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
286 287
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
288
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
289 290 291
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
292 293
    }

T
tensor-tang 已提交
294 295 296 297
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
298

T
tensor-tang 已提交
299
    int tstart = 0;
T
tensor-tang 已提交
300
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
301
    if (h0) {
T
tensor-tang 已提交
302
      // reorder h0
T
tensor-tang 已提交
303
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
304 305 306 307 308 309 310
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
311
    } else {
T
tensor-tang 已提交
312 313 314 315 316
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
317
        ker->ComputeH1(cur_in_data, cur_out_data);
T
tensor-tang 已提交
318 319 320 321 322 323
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
324
    }
T
tensor-tang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
339
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
340 341
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
T
tensor-tang 已提交
342 343
        ker->ComputeHtPart1(cur_batched_data, cur_prev_hidden_data,
                            cur_out_data);
T
tensor-tang 已提交
344 345
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
346
        cur_out_data += D;
T
tensor-tang 已提交
347 348
      }

T
tensor-tang 已提交
349
      cur_batched_data = batched_input_data;
350
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
351
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
352
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
353 354 355 356
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
T
tensor-tang 已提交
357 358
        ker->ComputeHtPart2(cur_batched_data, cur_prev_hidden_data,
                            cur_out_data);
T
tensor-tang 已提交
359 360 361
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
362
      }
T
tensor-tang 已提交
363 364 365
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
366
    }
T
tensor-tang 已提交
367

T
tensor-tang 已提交
368
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
369 370
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
371
  }
T
tensor-tang 已提交
372 373
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
374 375 376 377 378 379 380 381
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
382 383
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);