fusion_gru_op.cc 12.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Input"),
                 "Input(%s) of GRUOp should not be null.", "Input");
  PADDLE_ENFORCE(ctx->HasInput("Weight"),
                 "Input(%s) of GRUOp should not be null.", "Weight");
  PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                 "Output(%s) of GRUOp should not be null.", "BatchGate");
  PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"),
                 "Output(%s) of GRUOp should not be null.",
                 "BatchResetHiddenPrev");
  PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
                 "Output(%s) of GRUOp should not be null.", "BatchHidden");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(%s) of GRUOp should not be null.", "Hidden");
  auto input_dims = ctx->GetInputDim("Input");
  auto weight_dims = ctx->GetInputDim("Weight");
  int input_size = input_dims[1];
  int frame_size = weight_dims[0];
  PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                    "The input_size must be 3 times of frame_size in GRUOp.");
  PADDLE_ENFORCE_EQ(
      weight_dims[1], frame_size * 3,
      "The shape of Weight matrix must be [frame_size, frame_size * 3].");
  if (ctx->HasInput("H0")) {
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
  if (ctx->HasInput("Bias")) {
    auto bias_dims = ctx->GetInputDim("Bias");
    int bias_height = bias_dims[0];
    int bias_width = bias_dims[1];
    PADDLE_ENFORCE_EQ(bias_height, 1,
                      "The shape of Bias must be [1, frame_size * 3].");
    PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                      "The shape of Bias must be [1, frame_size * 3].");
  }
  ctx->SetOutputDim("BatchGate", input_dims);
  ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
  ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
  ctx->ShareLoD("Input", "Hidden");
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
  AddInput("Input",
           "(LoDTensor) The first input is a LodTensor, which supports "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
           "total time steps in this mini-batch, D is the hidden size.");
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
  AddInput(
      "Weight",
      "(Tensor) The learnable hidden-hidden weight matrix with shape "
      "(D x 3D), where D is the hidden size. The elements continuous in "
      "memory can be divided into two parts. The first part are weights of "
      "the update gate and reset gate with shape (D x 2D), and the second "
      "part are weights of output candidate with shape (D x D).");
  AddInput("Bias",
           "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
           "bias of the update gate, reset gate and output candidate.")
      .AsDispensable();
  AddOutput("BatchGate",
            "(LoDTensor) To compute with batches, sequence data will be "
            "reorganized into several successive batches each containing "
            "data from the same time step. The LoDTensor BatchGate contains "
            "the update gate, reset gate and output candidate values "
            "organized in batches. The LoD size is 2. The first LoD contains "
            "the batch offsets and the second LoD contains the indexes in "
            "the raw sequence data.")
      .AsIntermediate();
  AddOutput(
      "BatchResetHiddenPrev",
      "(LoDTensor) The reseted hidden state LoDTensor organized in batches. "
      "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
      "with `BatchGate`.")
      .AsIntermediate();
  AddOutput(
      "BatchHidden",
      "(LoDTensor) The hidden state LoDTensor organized in batches.  "
      "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
      "with `BatchGate`.")
      .AsIntermediate();
  AddOutput(
      "Hidden",
      "(LoDTensor) the hidden state LoDTensor organized in sequences. "
      "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
      "with `BatchGate`.");
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

template <typename DeviceContext, typename T>
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* h = context.Input<LoDTensor>("H");
    auto* h0 = context.Input<Tensor>("H0");
    auto* x_weight = context.Input<Tensor>("XWeight");     // x_dim*3D
    auto* gate_weight = context.Input<Tensor>("HWeight");  // D*3D
    auto* bias = context.Input<Tensor>("Bias");            // 1*3D

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
    math::GRUMetaValue<T> gru_value;
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
    size_t seq_len = batch_starts.size() - 1;
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
    // use MKL packed to speedup GEMM
    if (FLAGS_paddle_num_threads >= 4) {
      auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_gate);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
                     frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_state);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
                     frame_size, T(1.0), gru_value.state_weight, frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
              frame_size, gru_value.prev_out_value, frame_size, packed_gate,
              frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
        }

        math::detail::forward_reset_output(
            math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_gate);

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
              gru_value.reset_output_value, frame_size, packed_state,
              frame_size, T(1), gru_value.gate_value + frame_size * 2,
              frame_size * 3);
        }

        math::detail::forward_final_output(
            math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_node);

        gru_value.prev_out_value = gru_value.output_value;
      }

      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
#endif
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        math::GRUUnitFunctor<DeviceContext, T>::compute(
            dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
            active_gate);

        gru_value.prev_out_value = gru_value.output_value;
      }
#ifdef PADDLE_WITH_MKLML
    }
#endif
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(
    fusion_gru, ops::FusionGRUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUKernel<paddle::platform::CPUDeviceContext, double>);