fusion_gru_op.cc 13.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
28 29 30 31 32 33 34
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of GRU should not be null.");

  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null.");
T
tensor-tang 已提交
35 36 37 38 39 40
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                 "Output(ReorderedH0) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                 "Output(BatchedInput) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
                 "Output(BatchedOut) of GRU should not be null.");
T
tensor-tang 已提交
41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 "Output(Hidden) of GRU should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

T
tensor-tang 已提交
68 69 70 71 72 73
  if (ctx->HasInput("H0")) {
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
74 75 76 77 78
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
79 80
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
81 82
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
T
tensor-tang 已提交
83 84
  ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
85 86 87 88 89
  ctx->ShareLoD("X", "Hidden");

  int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98 99
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
100 101
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
102
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
103 104
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
105 106 107 108 109
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
110 111 112 113
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
114 115 116 117 118
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
119
  AddInput("Bias",
T
tensor-tang 已提交
120 121 122
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
123
      .AsDispensable();
T
tensor-tang 已提交
124 125
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
126
  AddOutput("XX",
T
tensor-tang 已提交
127
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
128 129 130
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
131
      .AsIntermediate();
T
tensor-tang 已提交
132 133
  AddOutput("BatchedInput", "(LoDTensor) (T x 3D)").AsIntermediate();
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
134
      .AsIntermediate();
T
tensor-tang 已提交
135
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
156
template <typename T>
T
tensor-tang 已提交
157 158
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
159
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
160
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
161 162 163 164 165
    auto* x = ctx.Input<LoDTensor>("X");
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* h0 = ctx.Input<Tensor>("H0");
T
tensor-tang 已提交
166

T
tensor-tang 已提交
167
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
T
tensor-tang 已提交
168
    auto* xx = ctx.Output<LoDTensor>("XX");
T
tensor-tang 已提交
169 170
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
171
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
T
tensor-tang 已提交
172

T
tensor-tang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    bool is_reverse = ctx.Attr<bool>("is_reverse");
    std::function<void(const int, const T *, T *)> act_gate, act_state;
    std::function<void(const int, const T, const T*, T*)> bias_sub;
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_state_str = ctx.Attr<std::string>("activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_state = act_functor(act_state_str);
      bias_sub = math::vec_bias_sub<T, platform::jit::avx>;
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_state = act_functor(act_state_str);
      bias_sub = math::vec_bias_sub<T, platform::jit::isa_any>;
    }
T
tensor-tang 已提交
189

T
tensor-tang 已提交
190 191 192
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
193 194 195 196 197
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_input_data = batched_input->mutable_data<T>(ctx.GetPlace());
    T* batched_out_data = batched_out->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
198 199
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();
T
tensor-tang 已提交
200 201 202
    const int D3 = wx_dims[1];
    const int D = D3 / 3;
    const int D2 = D * 2;
T
tensor-tang 已提交
203 204 205 206 207 208 209
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    if (x_dims[1] > wx_dims[1]) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        x_data, wx_data, xx_data,
                                        bias ? bias->data<T>() : NULL);
T
tensor-tang 已提交
210
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
211 212
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
213
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
214
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
T
tensor-tang 已提交
215
                                        xx_data, wx_data, batched_input_data,
T
tensor-tang 已提交
216
                                        bias ? bias->data<T>() : NULL);
T
tensor-tang 已提交
217 218
    }

T
tensor-tang 已提交
219 220 221 222
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
223

T
tensor-tang 已提交
224 225
    int tstart = 0;
    T* prev_hidden_data = NULL;
T
tensor-tang 已提交
226
    if (h0) {
T
tensor-tang 已提交
227 228 229 230 231 232 233 234 235
      // reorder h0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(ctx.GetPlace());
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
236
    } else {
T
tensor-tang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
        // update gate
        act_gate(D, cur_in_data, cur_in_data);
        // state gate
        act_state(D, cur_in_data + D2, cur_in_data + D2);
        // out = a*b
        blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data);
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
254
    }
T
tensor-tang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        act_gate(D2, cur_batched_data, cur_batched_data);
        // rt = rt*ht_1 inplace result
        // TODO(TJ): try to save to cur out data
        // maybe get benifits avoiding cache miss in next gemm
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D,
                  cur_batched_data + D);

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
T
tensor-tang 已提交
280 281
      }

T
tensor-tang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
      cur_batched_data = batched_input_data;
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
                cur_batched_data + D, D3, wh_state_data, D, static_cast<T>(1),
                cur_batched_data + D2, D3);

      T* cur_out_data = batched_out_data;
      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        // ht~ = act_state(...)
        act_state(D, cur_batched_data + D2, cur_batched_data + D2);
        // ht~~ = zt*ht~ inplace result
        blas.VMUL(D, cur_batched_data, cur_batched_data + D2,
                  cur_batched_data + D2);
        // zt = 1 - zt inplace result
        bias_sub(D, static_cast<T>(1), cur_batched_data, cur_batched_data);
        // zt = ht_1 * zt
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data, cur_batched_data);
        // out = zt + ht~~
        blas.VADD(D, cur_batched_data, cur_batched_data + D2, cur_out_data);

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
305
      }
T
tensor-tang 已提交
306 307 308
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
309
    }
T
tensor-tang 已提交
310

T
tensor-tang 已提交
311
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
312 313
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
314 315 316 317 318 319 320 321 322
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
323 324
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);