fusion_gru_op.cc 17.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/fusion_infershape_define.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
24 25 26 27 28

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
29
  FUSION_INFERSHAPE_INIT;
T
tensor-tang 已提交
30 31 32 33 34 35 36 37
  PADDLE_ENFORCE(fair_input("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(fair_input("WeightX"),
                 "Assert only one Input(WeightX) of GRU.");
  PADDLE_ENFORCE(fair_input("WeightH"),
                 "Assert only one Input(WeightH) of GRU.");
  PADDLE_ENFORCE(fair_output("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(fair_output("Hidden"),
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

T
tensor-tang 已提交
63
  if (fair_input("H0")) {
T
tensor-tang 已提交
64 65 66 67
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
T
tensor-tang 已提交
68
  if (fair_input("Bias")) {
T
tensor-tang 已提交
69 70 71 72 73
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
74 75
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
76 77 78
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
79
  int xx_width;
T
tensor-tang 已提交
80
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
81 82 83
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
84 85 86 87 88 89
    PADDLE_ENFORCE(fair_output("ReorderedH0"),
                   "Assert only one Output(ReorderedH0) of GRU.");
    PADDLE_ENFORCE(fair_output("BatchedInput"),
                   "Assert only one Output(BatchedInput) of GRU.");
    PADDLE_ENFORCE(fair_output("BatchedOut"),
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
90 91
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
92
  }
T
tensor-tang 已提交
93 94
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
95 96 97 98 99 100 101 102 103 104
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
105 106
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
107
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
108 109
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
110 111 112 113 114
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
115 116 117 118
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
119 120 121 122 123
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
124
  AddInput("Bias",
T
tensor-tang 已提交
125 126 127
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
128
      .AsDispensable();
T
tensor-tang 已提交
129 130
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
131
  AddOutput("XX",
T
tensor-tang 已提交
132
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
133 134 135
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
136
      .AsIntermediate();
T
tensor-tang 已提交
137 138 139 140
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
141
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
142
      .AsIntermediate();
T
tensor-tang 已提交
143
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
157 158 159 160
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
161 162 163 164 165 166 167
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
168
template <typename T>
T
tensor-tang 已提交
169 170
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
171
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
172
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

#define INIT_VEC_FUNC                                                     \
  std::function<void(const int, const T *, T *)> act_gate, act_state;     \
  std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");          \
  auto& act_state_str = ctx.Attr<std::string>("activation");              \
  if (platform::jit::MayIUse(platform::jit::avx)) {                       \
    math::VecActivations<T, platform::jit::avx> act_functor;              \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::avx>;                       \
  } else {                                                                \
    math::VecActivations<T, platform::jit::isa_any> act_functor;          \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::isa_any>;                   \
  }

T
tensor-tang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 3D*/ \
  const int total_T = x_dims[0];         \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D3 = wh_dims[1];             \
  const int D2 = D * 2;

T
tensor-tang 已提交
214 215 216
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
217 218
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
T
tensor-tang 已提交
219 220 221 222 223
    INIT_VEC_FUNC

    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
224
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
225 226 227 228 229 230 231 232
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
    const T* wh_state_data = wh_data + D * D2;
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
233 234
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
252
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
        // W: {W_update, W_reset; W_state}
        // update gate
        act_gate(D, xx_data, xx_data);
        // state gate
        act_state(D, xx_data + D2, xx_data + D2);
        // out = a*b
        blas.VMUL(D, xx_data, xx_data + D2, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
        act_gate(D2, xx_data, xx_data);
        // rt = rt*ht_1 inplace result
        blas.VMUL(D, prev_hidden_data, xx_data + D, hidden_out_data);

        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
        act_state(D, xx_data + D2, xx_data + D2);
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, xx_data, xx_data + D2, prev_hidden_data, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
293
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
294
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
295 296 297 298 299 300 301
    if (x->lod()[0].size() == 2) {
      SeqCompute(ctx);
      return;
    }
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
302

T
tensor-tang 已提交
303 304 305
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
306

T
tensor-tang 已提交
307 308 309
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
310 311 312 313 314
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_input_data = batched_input->mutable_data<T>(ctx.GetPlace());
    T* batched_out_data = batched_out->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
315 316 317
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
318 319 320 321
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
322
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
323 324
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
325
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
326 327 328
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
329 330
    }

T
tensor-tang 已提交
331 332 333 334
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
335

T
tensor-tang 已提交
336
    int tstart = 0;
T
tensor-tang 已提交
337
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
338
    if (h0) {
T
tensor-tang 已提交
339 340 341 342 343 344 345 346 347
      // reorder h0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(ctx.GetPlace());
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
348
    } else {
T
tensor-tang 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
        // update gate
        act_gate(D, cur_in_data, cur_in_data);
        // state gate
        act_state(D, cur_in_data + D2, cur_in_data + D2);
        // out = a*b
        blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data);
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
366
    }
T
tensor-tang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
381
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
382 383 384 385
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        act_gate(D2, cur_batched_data, cur_batched_data);
        // rt = rt*ht_1 inplace result
386
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D, cur_out_data);
T
tensor-tang 已提交
387 388 389

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
390
        cur_out_data += D;
T
tensor-tang 已提交
391 392
      }

T
tensor-tang 已提交
393
      cur_batched_data = batched_input_data;
394
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
395
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
396
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
397 398 399 400 401 402
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        // ht~ = act_state(...)
        act_state(D, cur_batched_data + D2, cur_batched_data + D2);
T
tensor-tang 已提交
403 404 405
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, cur_batched_data, cur_batched_data + D2, cur_prev_hidden_data,
              cur_out_data);
T
tensor-tang 已提交
406 407 408 409

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
410
      }
T
tensor-tang 已提交
411 412 413
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
414
    }
T
tensor-tang 已提交
415

T
tensor-tang 已提交
416
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
417 418
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
419
  }
T
tensor-tang 已提交
420
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
421 422
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
423 424 425 426 427 428 429 430
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
431 432
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);