framework.py 157.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
166
def cuda_places(device_ids=None):
L
lujun 已提交
167
    """
168 169 170 171 172
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
173 174

    If :code:`device_ids` is None, environment variable of
175
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
176 177 178
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
179
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
180 181

    If :code:`device_ids` is not None, it should be the device
182
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
183 184 185
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
186 187
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
188 189

    Returns:
190
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
191 192 193 194

    Examples:
        .. code-block:: python

195
            import paddle.fluid as fluid
L
lujun 已提交
196 197 198
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
199 200 201
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
202
        device_ids = _cuda_ids()
S
sneaxiy 已提交
203 204 205 206 207 208
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
209
    """
210
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
211 212 213
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
214 215
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
216 217
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
218

219 220
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
221 222

    Returns:
223
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
224 225 226 227

    Examples:
        .. code-block:: python

228
            import paddle.fluid as fluid
L
lujun 已提交
229 230 231
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
232 233 234 235 236 237
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
238
    """
239
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
240 241 242

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
243 244 245 246
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
247

248 249
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
250 251

    Returns:
252
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
253 254 255 256

    Examples:
        .. code-block:: python

257
            import paddle.fluid as fluid
L
lujun 已提交
258 259 260 261 262
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
263 264 265 266 267 268 269
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
296
@signature_safe_contextmanager
297 298 299 300
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

301 302 303
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
304 305

    Args:
306
        prefix(str, optional): prefix. Default is none.
307 308 309

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
310

311
          import paddle.fluid as fluid
312
          with fluid.name_scope("s1"):
313 314 315 316 317 318
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
319
          with fluid.name_scope("s1"):
320
                f = fluid.layers.pow(d, 2.0)
321
          with fluid.name_scope("s4"):
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
341 342
    """
    # TODO(panyx0718): Only [0-9a-z].
343 344 345 346 347 348 349 350 351
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
352 353 354 355 356 357 358 359 360 361 362 363


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
364 365 366
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
367 368 369 370


def grad_var_name(var_name):
    """
371 372
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
373 374 375
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
376

377
def convert_np_dtype_to_dtype_(np_dtype):
378 379
    """
    Convert the data type in numpy to the data type in Paddle
380

381
    Args:
382
        np_dtype(np.dtype): the data type in numpy.
383

384 385
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
386 387

    """
388 389
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
390
        return core.VarDesc.VarType.FP32
391
    elif dtype == np.float64:
392
        return core.VarDesc.VarType.FP64
393
    elif dtype == np.float16:
394
        return core.VarDesc.VarType.FP16
395
    elif dtype == np.int32:
396
        return core.VarDesc.VarType.INT32
397
    elif dtype == np.int16:
398
        return core.VarDesc.VarType.INT16
399
    elif dtype == np.int64:
400
        return core.VarDesc.VarType.INT64
401
    elif dtype == np.bool:
402
        return core.VarDesc.VarType.BOOL
403 404
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
405 406
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
407 408
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
409
    else:
M
minqiyang 已提交
410
        raise ValueError("Not supported numpy dtype %s" % dtype)
411 412 413


def dtype_is_floating(dtype):
414 415 416
    """
    Check the data type is floating or not.
    Args:
417
        dtype(np.dtype|core.VarDesc.VarType): data type.
418 419 420 421 422
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
423
    if not isinstance(dtype, core.VarDesc.VarType):
424 425
        dtype = convert_np_dtype_to_dtype_(dtype)

426 427 428 429
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
430 431


Y
Yang Yang(Tony) 已提交
432
def _debug_string_(proto, throw_on_error=True):
433 434 435 436 437 438 439 440 441 442 443
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
444
    error_fields = list()
Y
Yang Yang(Tony) 已提交
445
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
446 447
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
448 449 450
    return proto.__str__()


X
Xin Pan 已提交
451
class Variable(object):
452
    """
453
    **Notes**:
454
        **The constructor of Variable should not be invoked directly.**
455

456 457
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

458 459 460
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
461
    cases, variables are used for holding different kinds of data or training
462 463
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
464

465
    There are many kinds of variables. Each kind of them has its own attributes
466
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
467

468
    Most of a Variable's member variables can be setted to be None. It mean
469
    it is not available or will be specified later.
470

471
    Examples:
472 473
        In Static Graph Mode:

474 475
        .. code-block:: python

476
            import paddle.fluid as fluid
477
            cur_program = fluid.Program()
478 479 480 481
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
482
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
483 484 485 486 487 488 489 490 491

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

492 493
    """

Y
Yu Yang 已提交
494 495
    def __init__(self,
                 block,
Y
Yu Yang 已提交
496
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
497 498 499 500
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
501
                 capacity=None,
Q
QI JUN 已提交
502
                 persistable=None,
F
fengjiayi 已提交
503
                 error_clip=None,
Y
Yu Yang 已提交
504
                 stop_gradient=False,
F
fengjiayi 已提交
505
                 is_data=False,
H
Huihuang Zheng 已提交
506
                 need_check_feed=False,
H
hong 已提交
507
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
508
                 **kwargs):
Y
Yu Yang 已提交
509 510
        self.block = block
        if name is None:
Y
Yu Yang 已提交
511
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
512

Y
Yu Yang 已提交
513
        if dtype is not None:
514
            if not isinstance(dtype, core.VarDesc.VarType):
515
                dtype = convert_np_dtype_to_dtype_(dtype)
516

H
hong 已提交
517 518
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
519
        if in_dygraph_mode():
M
minqiyang 已提交
520
            # record vars in tracer rather than blocks
M
minqiyang 已提交
521
            self._ivar = kwargs.get("ivar", None)
522
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
523
            if not self._ivar:
524
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
525 526 527
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
528
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
529
                    if persistable else False)
M
minqiyang 已提交
530
            if persistable:
L
lujun 已提交
531
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
532
            self.op = None
M
minqiyang 已提交
533
        else:
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
598 599 600
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

601 602 603 604 605 606 607 608
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
609
            self.block.vars[name] = self
610
            self.op = None
611
            self._stop_gradient = stop_gradient
612
            self.is_data = is_data
Y
Yu Yang 已提交
613

614
    @dygraph_only
615 616
    def detach(self):
        """
617 618
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
619

620
        Returns a new Variable, detached from the current graph.
621

622
        Returns:
623
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
624

625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

653
    @dygraph_only
654
    def numpy(self):
655
        """
656 657
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
658

659
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
660 661 662 663 664

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
665
            ndarray: dtype is same as current Variable
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
687
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
688
        return np.array(new_ivar.value().get_tensor())
689

690 691 692
    @dygraph_only
    def set_value(self, value):
        """
693 694 695
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
719 720 721 722
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
723
        if isinstance(value, Variable):
H
hong 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
738

739
    @dygraph_only
740
    def backward(self, backward_strategy=None):
741
        """
742 743
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
744 745 746

        Run backward of current Graph which starts from current Variable

747 748
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
749

750 751
        Returns:
            NoneType: None
752 753 754 755 756 757 758 759 760 761 762 763

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
764 765
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
766 767 768 769 770 771 772 773 774
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
775 776 777 778 779
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
780

J
Jiabin Yang 已提交
781 782 783 784
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
785

786
    @dygraph_only
787
    def gradient(self):
788
        """
789 790
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
791 792 793

        Get the Gradient of Current Variable

794 795
        Returns:
            ndarray: Numpy value of the gradient of current Variable
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
826 827
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
828

829
    @dygraph_only
830
    def clear_gradient(self):
831
        """
832 833 834 835
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
836

837
        Clear  (set to ``0`` ) the Gradient of Current Variable
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
864
        self._ivar._clear_gradient()
X
Xin Pan 已提交
865

866
    def __str__(self):
Y
Yang Yang(Tony) 已提交
867 868
        return self.to_string(True)

F
update  
fengjiayi 已提交
869
    def to_string(self, throw_on_error, with_details=False):
870 871 872
        """
        Get debug string.

873 874 875 876 877
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
878

879 880
        Returns:
            str: The debug string.
881 882 883 884 885

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
886

887 888 889 890 891
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
892
                print(new_variable.to_string(True))
893
                print("=============with detail===============")
894
                print(new_variable.to_string(True, True))
895
        """
L
lujun 已提交
896
        if in_dygraph_mode():
L
lujun 已提交
897
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
898 899 900 901 902 903 904
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
905

F
update  
fengjiayi 已提交
906 907
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
908
        protostr = self.desc.serialize_to_string()
909
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
910 911 912 913
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
914 915 916
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
917
        return res_str
918 919 920

    __repr__ = __str__

921
    @property
922
    def stop_gradient(self):
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
952
        if in_dygraph_mode():
M
minqiyang 已提交
953 954
            return self._ivar.stop_gradient
        else:
955
            return self._stop_gradient
956

957 958
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
959
        if in_dygraph_mode():
M
minqiyang 已提交
960
            self._ivar.stop_gradient = s
961
        else:
962
            self._stop_gradient = s
963

964 965
    @property
    def persistable(self):
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
987
        if in_dygraph_mode():
988 989 990
            return self._ivar.persistable
        else:
            return self.desc.persistable()
991

Y
Yu Yang 已提交
992 993
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
994
        if in_dygraph_mode():
995 996 997
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
998 999
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1000

Y
Yu Yang 已提交
1001 1002
    @property
    def name(self):
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1019
        if in_dygraph_mode():
1020 1021 1022
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1023

T
typhoonzero 已提交
1024 1025
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1026
        if in_dygraph_mode():
1027 1028 1029
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1030

Y
Yu Yang 已提交
1031 1032
    @property
    def shape(self):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1050
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1051
        if in_dygraph_mode():
1052 1053 1054
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1055 1056

    @property
F
fengjiayi 已提交
1057
    def dtype(self):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1074
        if in_dygraph_mode():
1075 1076 1077
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1078 1079

    @property
1080
    @dygraph_not_support
Y
Yu Yang 已提交
1081
    def lod_level(self):
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1103
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1104 1105
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1106
        return self.desc.lod_level()
Y
Yu Yang 已提交
1107

Y
Yu Yang 已提交
1108 1109
    @property
    def type(self):
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1126
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1127
            return self._ivar.type
1128 1129
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1130

W
Wu Yi 已提交
1131
    def _set_error_clip(self, error_clip):
1132 1133 1134 1135 1136 1137 1138 1139 1140
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1141 1142
        self.error_clip = error_clip

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1230
    def _cloneVar(self, copy=False):
1231 1232
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1233 1234
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1235 1236 1237 1238
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1239
        new_var = self._cloneVar()
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1250
        new_var = self._cloneVar()
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1261
                return self._cloneVar(True)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1280
                return self._cloneVar(True)
1281
            index = int(item)
1282
            if (index > 0 and index >= self.shape[axis]) \
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1348
            else:
H
Hongyu Liu 已提交
1349 1350 1351
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1431
                inputs=inputs,
H
Hongyu Liu 已提交
1432
                outputs={'Out': [slice_out_var]},
1433
                attrs=attrs)
H
Hongyu Liu 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1451

Y
Yu Yang 已提交
1452

F
fengjiayi 已提交
1453 1454 1455
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1456

1457 1458
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1459 1460 1461 1462
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1463
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1464 1465 1466 1467 1468
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1469 1470 1471 1472
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1482
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1483 1484 1485 1486 1487 1488
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1489 1490 1491 1492 1493 1494 1495 1496
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1497 1498
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1499 1500
        return self.op_proto_map[type]

1501 1502 1503 1504 1505 1506
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1507 1508 1509 1510
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1511
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1512 1513
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1514 1515
        }

F
fengjiayi 已提交
1516

X
Xin Pan 已提交
1517
class Operator(object):
1518
    """
1519 1520 1521 1522 1523 1524 1525
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1526
        type(str): The type of operator. Default None.
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1547
        Block.append_op or Block._prepend_op instead.
1548 1549 1550 1551

    Examples:
        .. code-block:: python

1552
            import paddle.fluid as fluid
1553
            cur_program = fluid.Program()
1554 1555 1556 1557 1558
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1559
    """
1560
    OP_WITHOUT_KERNEL_SET = {
1561 1562
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1563 1564
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1565
        'c_sync_comm_stream'
1566
    }
1567

Y
Yu Yang 已提交
1568 1569
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1570
                 desc,
Y
Yu Yang 已提交
1571 1572 1573
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1574
                 attrs=None):
L
lujun 已提交
1575
        if in_dygraph_mode():
1576 1577
            if type is None:
                raise ValueError(
1578
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1579
            self._type = type
M
minqiyang 已提交
1580
            self.attrs = attrs if attrs else {}
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1595
                )] = self.block.program._op_role
1596 1597 1598

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1599 1600
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1601 1602 1603 1604 1605 1606 1607 1608

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1609
                    "`type` to initialized an Operator can not be None.")
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1641
                        for index, arg in enumerate(in_args):
1642 1643 1644 1645
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1646
                            elif isinstance(arg, Variable):
1647
                                in_arg_names.append(cpt.to_text(arg.name))
1648 1649 1650 1651
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1678
                        if not in_dygraph_mode():
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1698
    def _has_kernel(self, op_type):
1699 1700
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1701
    def to_string(self, throw_on_error):
1702
        """
1703 1704
        Get debug string.

1705
        Args:
1706 1707
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1708

1709 1710
        Returns:
            str: The debug string.
1711 1712

        """
1713
        protostr = self.desc.serialize_to_string()
1714
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1715 1716 1717 1718
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1719 1720 1721

    __repr__ = __str__

F
fengjiayi 已提交
1722 1723
    @property
    def type(self):
L
lujun 已提交
1724
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1725
            return self._type
1726 1727
        else:
            return self.desc.type()
F
fengjiayi 已提交
1728 1729

    def input(self, name):
1730
        """
1731
        Get the input arguments according to the input parameter name.
1732

1733 1734
        Args:
            name(str): The input parameter name.
1735

1736 1737 1738
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1739
        """
F
fengjiayi 已提交
1740 1741
        return self.desc.input(name)

W
Wu Yi 已提交
1742
    def _rename_input(self, old_name, new_name):
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1753
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1754

W
Wu Yi 已提交
1755
    def _rename_output(self, old_name, new_name):
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1766
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1767

F
fengjiayi 已提交
1768 1769 1770 1771
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1772 1773 1774 1775 1776 1777 1778 1779
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1780
    def output(self, name):
1781
        """
1782
        Get output arguments by the output parameter name.
1783

1784 1785
        Args:
            name(str): The output parameter name.
1786

1787 1788 1789
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1790
        """
F
fengjiayi 已提交
1791 1792 1793 1794 1795 1796
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1797 1798 1799 1800 1801 1802 1803 1804
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1805
    def has_attr(self, name):
1806
        """
1807 1808
        Whether this Operator has the attribute with name or not.

1809
        Args:
1810
            name(str): the attribute name.
1811

1812 1813
        Returns:
            bool: True if has this attribute.
1814 1815

        """
F
fengjiayi 已提交
1816 1817 1818
        return self.desc.has_attr(name)

    def attr_type(self, name):
1819
        """
1820
        Get the type of attribute by attribute's name.
1821

1822 1823
        Args:
            name(str): the attribute name.
1824

1825 1826
        Returns:
            core.AttrType: the attribute type.
1827
        """
F
fengjiayi 已提交
1828 1829
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1830
    def _set_attr(self, name, val):
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1841 1842
        self._update_desc_attr(name, val)

1843 1844 1845
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1857 1858
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1859 1860
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1861
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1862 1863 1864 1865
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1866
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1867

F
fengjiayi 已提交
1868 1869 1870 1871 1872
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1873
        """
1874 1875
        Get the attribute by name.

1876
        Args:
1877
            name(str): the attribute name.
1878

1879 1880
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1881 1882
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1883
        return self.desc.attr(name)
Y
Yu Yang 已提交
1884

W
Wu Yi 已提交
1885
    def _block_attr_id(self, name):
1886
        """
G
gongweibao 已提交
1887
        Get the block attribute's id by name.
1888

1889 1890
        Args:
            name(str): the attribute name.
1891

1892 1893
        Returns:
            int: the block index.
1894
        """
W
Wu Yi 已提交
1895
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1896

W
Wu Yi 已提交
1897
    def _block_attr(self, name):
G
gongweibao 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1908
        id = self._block_attr_id(name)
G
gongweibao 已提交
1909 1910 1911
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1912
    def _blocks_attr(self, name):
G
gongweibao 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1923
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1924 1925 1926 1927 1928
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1929
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1940
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1941

J
JiayiFeng 已提交
1942
    def all_attrs(self):
F
fengjiayi 已提交
1943
        """
1944 1945 1946
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1947
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1948 1949 1950 1951
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1952 1953
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1954
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1955 1956 1957
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1958
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1959 1960 1961 1962
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1963 1964
        return attr_map

Y
Yu Yang 已提交
1965

Y
Yu Yang 已提交
1966
class Block(object):
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1981
        use `Program._create_block()` to create a block.
1982 1983 1984 1985

    Examples:
        .. code-block:: python

1986 1987 1988
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1989 1990 1991 1992 1993 1994 1995 1996 1997
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1998
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1999
        self.desc = program.desc.block(idx)
2000
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2001
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2002
        self.program = program
2003
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2004

2005
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2006 2007
        return self.to_string(True)

F
fengjiayi 已提交
2008 2009
    def to_string(self, throw_on_error, with_details=False):
        """
2010 2011
        Get debug string.

F
fengjiayi 已提交
2012 2013
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2014
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2015
            with_details(bool): more details about variables and parameters
2016 2017
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2018

2019 2020
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2021 2022 2023 2024
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2025
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2026 2027
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2028
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2029
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2030
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2031
            for op in self.ops:
F
fengjiayi 已提交
2032 2033
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2034 2035 2036
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2037 2038
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2039 2040
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2041 2042 2043

    __repr__ = __str__

Y
Yu Yang 已提交
2044 2045
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2046
        return self.desc.parent
Y
Yu Yang 已提交
2047

Y
Yu Yang 已提交
2048 2049 2050 2051
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2052
    def _set_forward_block_idx(self, idx):
2053 2054 2055 2056 2057 2058 2059 2060 2061
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2062
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2063

Y
Yu Yang 已提交
2064 2065
    @property
    def idx(self):
Y
Yu Yang 已提交
2066
        return self.desc.id
Y
Yu Yang 已提交
2067

Q
Qiao Longfei 已提交
2068
    def var(self, name):
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2082
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2083 2084 2085
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2086 2087
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2088
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2089
        return v
Q
Qiao Longfei 已提交
2090

X
Xin Pan 已提交
2091
    def _find_var_recursive(self, name):
2092 2093 2094 2095 2096 2097 2098
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2099
            Variable: the Variable with the giving name. Or None if not found.
2100
        """
Y
Yu Yang 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2125
        return None
Y
Yu Yang 已提交
2126

X
Xin Pan 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2146

Q
Qiao Longfei 已提交
2147
    def all_parameters(self):
2148
        return list(self.iter_parameters())
2149

2150
    def iter_parameters(self):
M
minqiyang 已提交
2151
        return (item[1] for item in six.iteritems(self.vars)
2152
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2153

Y
Yu Yang 已提交
2154
    def create_var(self, *args, **kwargs):
2155
        var = Variable(block=self, *args, **kwargs)
2156 2157
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2158
        return var
Y
Yu Yang 已提交
2159

Q
Qiao Longfei 已提交
2160 2161 2162
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2163
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2164 2165
        """
        Rename variable in vars and ops' inputs and outputs
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2178
        """
M
minqiyang 已提交
2179 2180
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2181

T
typhoonzero 已提交
2182
        if not self.has_var(name):
2183
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2184 2185
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2186
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2187 2188 2189 2190 2191 2192 2193
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2194
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2195 2196 2197 2198
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2199
        orig_var_type = v.type
M
minqiyang 已提交
2200
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2201
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2202
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2203
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2204 2205 2206 2207
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2208
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2209 2210 2211 2212 2213 2214 2215
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2216
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2217 2218
            var = Variable(
                self,
T
typhoonzero 已提交
2219
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2220 2221 2222 2223
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2224
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2225 2226 2227
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2228
        self._sync_with_cpp()
2229
        return var
T
typhoonzero 已提交
2230

W
Wu Yi 已提交
2231 2232
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2233
        self.desc._remove_var(cpt.to_bytes(name))
2234 2235
        del self.vars[name]

Y
Yu Yang 已提交
2236 2237
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2238
        param = Parameter(global_block, *args, **kwargs)
2239
        if 'initializer' in kwargs:
2240 2241 2242 2243 2244

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2245 2246 2247 2248 2249
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2265
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2266
        return param
Y
Yu Yang 已提交
2267

Y
Yu Yang 已提交
2268
    def append_op(self, *args, **kwargs):
2269 2270 2271 2272 2273 2274
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2275
        if in_dygraph_mode():
2276 2277 2278
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2279 2280 2281 2282 2283
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2284

J
Jiabin Yang 已提交
2285 2286
            type = kwargs.get("type", None)

2287 2288 2289
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2290
                type=type,
M
minqiyang 已提交
2291 2292
                inputs=None,
                outputs=None,
2293
                attrs=attrs)
2294

M
minqiyang 已提交
2295 2296 2297
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2298
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2299 2300

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2301
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2302 2303
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2304
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2305
        else:
2306 2307 2308 2309 2310 2311 2312 2313 2314
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2315
            self.ops.append(op)
M
minqiyang 已提交
2316

2317 2318
        return op

W
Wu Yi 已提交
2319
    def _insert_op(self, index, *args, **kwargs):
2320 2321 2322 2323 2324 2325 2326 2327 2328
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2329 2330
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2331 2332 2333 2334
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2335
    def _remove_op(self, index):
2336 2337 2338 2339 2340 2341 2342 2343 2344
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2345 2346
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2347 2348
        del self.ops[index]

W
Wu Yi 已提交
2349
    def _slice_ops(self, start, end):
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2360
        return self.ops[start:end]
Y
Yancey1989 已提交
2361

W
Wu Yi 已提交
2362
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2363
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2364 2365
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2366
            op = Operator(
J
Jiabin Yang 已提交
2367
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2368

J
Jiabin Yang 已提交
2369
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2370
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2371 2372
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2373
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2374
        else:
2375 2376 2377 2378 2379 2380 2381 2382
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2383
            self.ops.insert(0, op)
2384

Y
Yu Yang 已提交
2385 2386
        return op

W
Wu Yi 已提交
2387
    def _sync_with_cpp(self):
2388
        """
2389 2390
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2391
        """
Q
Qiao Longfei 已提交
2392 2393 2394 2395 2396
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2397
        # sync variables removed from c++ end
2398
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2399
            if not self.desc.find_var(cpt.to_bytes(var)):
2400 2401
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2402
        # sync operators from cpp
2403 2404 2405 2406
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2423 2424 2425 2426 2427

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2428
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2429 2430 2431 2432 2433 2434 2435

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2449 2450 2451 2452
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2453
    def _copy_param_info_from(self, other):
2454
        """
2455 2456
        Copy the information of parameters from the other block.

2457
        Args:
2458 2459 2460 2461 2462
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2463 2464 2465 2466 2467

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2468 2469
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2470
        for p in other.iter_parameters():
2471 2472 2473
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2474
                raise ValueError("_copy_param_info_from should be invoked with "
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2487
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2488
                error_clip=p.error_clip,
2489 2490 2491
                name=v.name)
            self.vars[new_p.name] = new_p

2492
    def _clone_variable(self, var, force_persistable=True):
2493 2494
        """
        Clone a variable into current block.
2495

2496 2497
        Args:
            var: the variable to be cloned.
2498 2499 2500
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2501 2502

        Returns:
2503
            Variable: the new  variable cloned from 'var' in current block.
2504 2505
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2506 2507 2508 2509 2510
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2511 2512
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2513
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2514 2515 2516 2517 2518 2519
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2520
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2521 2522
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2523 2524 2525 2526 2527 2528 2529
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2530
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2531 2532
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2533
        return ret_var
2534

Y
Yu Yang 已提交
2535

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2631
    def remove_input_by_id(self, node_id):
2632 2633 2634 2635 2636 2637
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2638
        self.node.remove_input(node_id)
2639

2640
    def remove_input(self, node):
2641 2642 2643 2644
        """
        Remove a node from inputs.

        Args:
2645
            node(IrNode): the node being removed.
2646
        """
2647
        self.node.remove_input(node.node)
2648

2649
    def append_input(self, node):
2650 2651 2652 2653
        """
        Append a node in inputs.

        Args:
2654
            node(IrNode): the node being appended.
2655
        """
2656
        self.node.append_input(node.node)
2657 2658 2659 2660 2661 2662 2663 2664

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2665
    def remove_output_by_id(self, node_id):
2666 2667 2668 2669 2670 2671
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2672
        self.node.remove_output(node_id)
2673

2674
    def remove_output(self, node):
2675 2676 2677 2678
        """
        Remove a node from outputs.

        Args:
2679
            node(IrNode): the node being removed.
2680
        """
2681
        self.node.remove_output(node.node)
2682

2683
    def append_output(self, node):
2684 2685 2686 2687
        """
        Append a node in outputs.

        Args:
2688
            node(IrNode): the node being appended.
2689
        """
2690
        self.node.append_output(node.node)
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2908
                all(isinstance(v, Block) for v in val):
2909 2910
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2911
                isinstance(val, core.ProgramDesc):
2912 2913 2914 2915
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2959 2960
class IrGraph(object):
    """
2961
    Python IrGraph. Beneath it is a core.Graph, which is used for
2962
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2963 2964
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2965 2966 2967 2968
    """

    def __init__(self, graph, for_test=False):
        """
2969 2970
        Construct an IrGraph using core.Graph.

2971 2972 2973 2974 2975 2976 2977 2978 2979
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2980 2981 2982 2983
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2984 2985 2986
        Warns:
            The method only clones the graph structure, not its attributes.

2987 2988 2989
        Returns:
            IrGraph: A new and duplicated graph.
        """
2990
        g = self.graph.clone()
2991 2992
        return IrGraph(g, self._for_test)

2993
    def is_test(self):
2994 2995 2996
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2997 2998
        return self._for_test

W
WangZhen 已提交
2999
    def all_nodes(self):
3000 3001 3002
        """
        Return all nodes included in the graph as a set.
        """
3003
        return {IrNode(node) for node in self.graph.nodes()}
3004

3005
    def all_var_nodes(self):
3006 3007 3008
        """
        Return all variable nodes included in the graph as a set.
        """
3009
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3010

3011
    def all_persistable_nodes(self):
3012 3013 3014
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3015 3016 3017 3018 3019
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3020
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3021

3022
    def all_op_nodes(self):
3023 3024 3025
        """
        Return all operator nodes included in the graph as a set.
        """
3026
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3027

3028
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3040
            IrVarNode: the created persistable variable node.
3041
        """
3042 3043 3044 3045 3046
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3047
        return IrVarNode(self.graph.create_var_node(var_desc))
3048 3049

    def create_var_node(self, name, var_type, shape, var_dtype):
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3061
            IrVarNode: the created variable node.
3062 3063
        """

3064 3065 3066 3067
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3068
        return IrVarNode(self.graph.create_var_node(var_desc))
3069 3070

    def create_var_node_from_desc(self, var_desc):
3071 3072 3073 3074 3075 3076 3077 3078
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3079
            IrVarNode: the created variable node.
3080
        """
3081
        return IrVarNode(self.graph.create_var_node(var_desc))
3082 3083

    def create_op_node(self, op_type, attrs, inputs, outputs):
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3094
            IrOpNode: the created operator node.
3095
        """
3096 3097
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3098
        for attr, value in six.iteritems(attrs):
3099
            self._update_desc_attr(op_desc, attr, value)
3100
        for input_name, var_nodes in six.iteritems(inputs):
3101 3102 3103 3104
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3105
        for output_name, var_nodes in six.iteritems(outputs):
3106 3107 3108 3109
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3110
        return IrOpNode(self.graph.create_op_node(op_desc))
3111 3112

    def create_op_node_from_desc(self, op_desc):
3113 3114 3115 3116 3117 3118 3119
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3120
            IrOpNode: the created operator node.
3121
        """
3122
        return IrOpNode(self.graph.create_op_node(op_desc))
3123 3124

    def update_input_link(self, old_input_node, new_input_node, op_node):
3125 3126 3127 3128
        """
        Update the input's link of a operator node.

        Args:
3129 3130 3131
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3132
        """
3133
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3134 3135
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3136 3137 3138 3139
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3140
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3160
    def link_to(self, node_in, node_out):
3161 3162 3163 3164
        """
        Connect two nodes.

        Args:
3165 3166
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3167
        """
3168
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3169
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3170 3171
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3172 3173

    def safe_remove_nodes(self, remove_nodes):
3174 3175 3176 3177 3178 3179 3180
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3181
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3182 3183 3184 3185
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3186 3187
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3188

Z
Zhen Wang 已提交
3189 3190 3191 3192 3193 3194 3195 3196
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3197
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3198 3199 3200 3201
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3202
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3203 3204 3205
                        ]
                    else:
                        var_nodes[each_var_name].append(
3206 3207
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3208 3209
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3210
    def has_circle(self):
3211 3212 3213 3214 3215 3216
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3217 3218 3219
        return core.has_circle(self.graph)

    def graph_num(self):
3220 3221 3222 3223 3224 3225
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3226 3227 3228
        return core.graph_num(self.graph)

    def topology_sort(self):
3229 3230 3231 3232 3233 3234
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3235
            list(IrNode): nodes in topology order.
3236
        """
3237
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3238
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3239 3240

    def build_adjacency_list(self):
3241 3242 3243 3244
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3245
            dict{IrNode: set(IrNode)}: the adjacency list.
3246
        """
3247 3248 3249 3250 3251
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3252

3253 3254 3255 3256 3257 3258 3259 3260
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3261
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3262 3263 3264 3265 3266
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3267 3268 3269
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3270
                                          + ' -o ' + pdf_save_path, shell=True)
3271 3272 3273 3274 3275
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3276
        remove_ctr_vars = set()
3277
        if remove_ctr_var:
3278
            for node in self.all_var_nodes():
3279 3280 3281
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3282 3283
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3284 3285
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3286 3287 3288 3289 3290 3291
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3292 3293 3294 3295
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3296 3297
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3298 3299 3300 3301 3302 3303 3304
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3305 3306 3307
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3308
        WARN: When the graph includes backward operator nodes, the
3309 3310 3311 3312 3313 3314
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3315
        convert_pass = core.get_pass('graph_to_program_pass')
3316 3317
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3318 3319 3320 3321
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3349
class Program(object):
D
dzhwinter 已提交
3350
    """
3351 3352
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3353
    it will contain nested block.
3354

3355 3356 3357
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3358

J
Jiabin Yang 已提交
3359
    A set of Program usually contains startup program and main program.
3360
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3361 3362 3363 3364 3365 3366 3367
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

3368 3369 3370 3371
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3372 3373

    Returns:
3374
        Program: An empty Program.
D
dzhwinter 已提交
3375 3376

    Examples:
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3390 3391 3392

    """

3393 3394
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3395 3396
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3397
        self._seed = 0
Y
yuyang18 已提交
3398
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3399
        self.__op_role_var = []
T
tangwei12 已提交
3400

3401 3402
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3403
        self._is_distributed = False
3404
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3405
        self._is_chief = False
3406 3407 3408
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3409
        self._endpoints = []
3410 3411 3412
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3413
        self._trainers_endpoints = []
3414
        # the distributed lookup table names
T
tangwei12 已提交
3415
        self._distributed_lookup_table = None
3416 3417 3418

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3419 3420
        self._use_lamb = False

3421 3422 3423
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3424

3425 3426 3427
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3428
        self._program_config = None
3429

H
hutuxian 已提交
3430 3431 3432
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3433 3434 3435
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3436
    @property
3437
    def _op_role(self):
Y
yuyang18 已提交
3438 3439 3440 3441 3442 3443 3444 3445
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3446
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3447 3448 3449 3450
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3451 3452
        return self._current_role

3453 3454
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3455 3456 3457
        self._current_role = role

    @property
3458
    def _op_role_var(self):
Y
yuyang18 已提交
3459
        """
3460
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3461

3462
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3463 3464 3465

        Notes: This is a very low-level API. Users should not use it directly.
        """
3466
        return self.__op_role_var
Y
yuyang18 已提交
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3477
    @signature_safe_contextmanager
W
Wu Yi 已提交
3478
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3479 3480 3481 3482 3483 3484 3485
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3486
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3487 3488 3489

        Examples:

3490
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3491
            >>> p, g = backward(...)
W
Wu Yi 已提交
3492
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3493 3494
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3495
        tmp_role = self._current_role
3496
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3497

Y
yuyang18 已提交
3498 3499
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3500
        self.__op_role_var = [
3501 3502 3503
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3504
        yield
3505
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3506
        self._current_role = tmp_role
Y
Yu Yang 已提交
3507

S
rename  
sneaxiy 已提交
3508
    @signature_safe_contextmanager
X
Xin Pan 已提交
3509
    def _lr_schedule_guard(self, is_with_opt=False):
3510 3511 3512 3513 3514 3515 3516
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3517 3518 3519 3520
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3521 3522 3523

        Examples:

3524
            >>> import paddle.fluid as fluid
3525 3526 3527 3528
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3529 3530

        tmp_role = self._current_role
3531
        tmp_var = self.__op_role_var
3532

3533 3534
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3535 3536
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3537
        # TODO(typhoonzero): how to set target learning rate var
3538
        self.__op_role_var = []
3539
        yield
3540
        self.__op_role_var = tmp_var
3541
        self._current_role = tmp_role
3542

3543
    def __str__(self):
Y
yuyang18 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3553 3554
        return self.to_string(True)

F
fengjiayi 已提交
3555 3556 3557
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3558

3559 3560 3561
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3562

3563
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3564

H
haowang101779990 已提交
3565
        Returns:
3566
            str: The debug string describe current Program.
Y
yuyang18 已提交
3567 3568

        Raises:
3569
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3570

3571 3572 3573 3574 3575 3576 3577
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3578 3579 3580
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3590 3591
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3592 3593
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3594

W
Wu Yi 已提交
3595
    def _get_desc(self):
Y
yuyang18 已提交
3596 3597 3598 3599 3600 3601 3602
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3603 3604
        return self.desc

X
version  
Xin Pan 已提交
3605 3606 3607
    def _version(self):
        return self.desc._version()

3608
    @dygraph_not_support
3609
    def clone(self, for_test=False):
Y
yuyang18 已提交
3610
        """
3611
        **Notes**:
3612 3613 3614 3615
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3616
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3617

3618 3619
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3620

3621

3622
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3623 3624 3625
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3626

Y
yuyang18 已提交
3627
        * Set for_test to False when we want to clone the program for training.
3628
        * Set for_test to True when we want to clone the program for testing.
3629 3630
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3631
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3632

3633 3634
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3635

3636 3637 3638 3639
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3640

3641
        Args:
3642

3643
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3644

3645 3646
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3647

Y
yuyang18 已提交
3648 3649 3650

        Examples:

3651
        **Notes: The Program's order maybe different after** :code:`clone` **and
3652
        this will not affect your training or testing progress. In the following
3653
        example we give you an simple method** :code:`print_prog(program)` **to
3654
        print Program Descs inorder to make sure you have same print result
3655
        after** :code:`clone`:
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3693 3694 3695

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3763 3764
        """
        if for_test:
3765
            if self._appending_grad_times > 0:
3766 3767 3768 3769 3770 3771 3772
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3773 3774 3775
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3776
        else:
3777
            p = Program()
G
gongweibao 已提交
3778 3779
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3780
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3781 3782 3783
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3784 3785

            p._current_role = self._current_role
3786
            p.__op_role_var = self.__op_role_var
3787
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3788

W
Wu Yi 已提交
3789
            p._sync_with_cpp()
3790

W
Wu Yi 已提交
3791
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3792
        p._copy_data_info_from(self)
3793
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3794
        return p
3795

3796
    def _prune(self, targets):
Y
yuyang18 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3810 3811 3812 3813
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3849
        """
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3867 3868
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3869 3870
        if not isinstance(targets, list):
            targets = [targets]
3871 3872 3873 3874 3875 3876

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3877 3878 3879 3880
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3881 3882
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3883
                    # and we need to find the current op that generate this
3884 3885 3886 3887 3888 3889 3890 3891
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3892
                    t = t.op
3893 3894 3895 3896
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3897
                else:
3898 3899
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3900 3901 3902

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3903
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3904 3905 3906
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3907
        res._sync_with_cpp()
3908 3909
        return res

X
Xin Pan 已提交
3910
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3911
        """
F
fengjiayi 已提交
3912 3913 3914 3915 3916
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3917
        3. change the :code:`is_test`
Y
yuyang18 已提交
3918 3919 3920
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3921
        Args:
X
Xin Pan 已提交
3922 3923
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3924

Y
yuyang18 已提交
3925 3926 3927 3928 3929 3930
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3931
        res = Program()
3932
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3933 3934 3935 3936

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3937
        if prune_read_op:
3938 3939 3940 3941 3942 3943 3944 3945 3946
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3947
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3948 3949

        # change all `is_test` attributes to True
M
minqiyang 已提交
3950
        for i in six.moves.range(res.desc.num_blocks()):
3951
            block = res.desc.block(i)
M
minqiyang 已提交
3952
            for j in six.moves.range(block.op_size()):
3953 3954
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3955
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3956 3957 3958
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3959
        res._sync_with_cpp()
3960 3961
        return res

3962 3963
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3964
        """
3965 3966 3967 3968
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3969

3970 3971
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3972

3973
        Args:
Y
yuyang18 已提交
3974

3975
            binary_str_type (str): the binary prootbuf string.
3976

3977 3978
        Returns:
            Program: A deserialized Program.
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4001
        """
4002 4003
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4004
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4005
        p._sync_with_cpp()
4006
        return p
Y
Yu Yang 已提交
4007

4008
    @staticmethod
4009
    def _construct_from_desc(desc):
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4025 4026
    @property
    def random_seed(self):
Y
yuyang18 已提交
4027
        """
4028
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4029 4030
        the random seed from random device.

4031 4032 4033 4034
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4035

4036 4037 4038 4039 4040 4041 4042 4043

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4044 4045 4046
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4047 4048
                print(random_seed)
                prog.random_seed = 1
4049 4050
                z_var = fluid.layers.dropout(x_var, 0.7)

4051
                print(prog.random_seed)
Y
yuyang18 已提交
4052
        """
D
dzhwinter 已提交
4053 4054
        return self._seed

Q
qiaolongfei 已提交
4055 4056
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4057
        """
4058 4059
        The number of :ref:`api_guide_Block_en`  in this Program.

4060 4061 4062 4063
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4064

4065 4066 4067 4068 4069 4070 4071 4072 4073

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4074 4075


Y
yuyang18 已提交
4076
        """
Q
qiaolongfei 已提交
4077 4078
        return self.desc.num_blocks()

D
dzhwinter 已提交
4079 4080 4081 4082 4083 4084
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4085
    def __repr__(self):
4086
        return self.__str__()
4087

Y
Yu Yang 已提交
4088
    def global_block(self):
Y
yuyang18 已提交
4089
        """
4090 4091
        **Notes**:
            **This API has no effect in Dygraph mode**
4092 4093 4094

        Get the first :ref:`api_guide_Block_en` of this Program.

4095 4096
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4107

Y
yuyang18 已提交
4108
        """
Y
Yu Yang 已提交
4109 4110
        return self.blocks[0]

Q
Qiao Longfei 已提交
4111
    def block(self, index):
Y
yuyang18 已提交
4112
        """
4113 4114
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4115

4116 4117
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

4118 4119
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4120

4121 4122
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4123 4124 4125 4126 4127 4128 4129 4130 4131

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4132
        """
Q
Qiao Longfei 已提交
4133 4134
        return self.blocks[index]

Y
Yu Yang 已提交
4135
    def current_block(self):
Y
yuyang18 已提交
4136
        """
4137 4138
        **Notes**:
            **This API has no effect in Dygraph mode**
4139

4140 4141
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4142

4143 4144
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4145

4146 4147 4148 4149 4150 4151 4152 4153
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4154
        """
Y
Yu Yang 已提交
4155 4156
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4157
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4158 4159 4160 4161 4162
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
4163

Y
yuyang18 已提交
4164 4165 4166 4167 4168
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4169
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4170 4171 4172
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4173 4174 4175 4176
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4177
    def _rollback(self):
Y
yuyang18 已提交
4178 4179 4180 4181 4182
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4183 4184
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4185
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4196 4197 4198
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4199
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4200

W
Wu Yi 已提交
4201
    def _copy_param_info_from(self, other):
4202
        """
4203
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4204

Y
yuyang18 已提交
4205 4206 4207
        Notes: This is a very low level API. Users should not invoke it
        directly.

4208 4209 4210 4211 4212 4213 4214
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4215
            raise TypeError("_copy_param_info_from should be invoked with "
4216 4217 4218
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4219
            raise ValueError("_copy_param_info_from should be invoked with two "
4220
                             "program, with represent the same topology")
W
Wu Yi 已提交
4221
        self.global_block()._copy_param_info_from(other.global_block())
4222

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4238
        self._parameters_on_pservers = other._parameters_on_pservers
4239
        self._endpoints = other._endpoints
4240
        self._ps_endpoint = other._ps_endpoint
4241 4242
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4243
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4244 4245
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4246

Y
yuyang18 已提交
4247 4248 4249
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4250 4251 4252 4253 4254 4255 4256
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4257
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4258 4259 4260
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4261
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4262
                             "program, with represent the same topology")
4263
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4264 4265
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4266 4267
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4268

4269
    @dygraph_not_support
4270
    def list_vars(self):
Y
yuyang18 已提交
4271
        """
4272
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4273

4274 4275
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4287
        """
4288
        for each_block in self.blocks:
4289
            for each_var in list(each_block.vars.values()):
4290 4291
                yield each_var

Y
Yu Yang 已提交
4292

Y
Yu Yang 已提交
4293
class Parameter(Variable):
4294
    """
4295
    Parameter is derived from Variable. A parameter is a persistable
4296
    Variable, and will be updated by optimizers after each iteration.
4297
    The training of a neural network is essentially the updating of
4298 4299
    its parameters.

4300
    Relative to a general Variable, a Parameter has several its own
4301 4302
    member variables:

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4315 4316
    """

Y
Yu Yang 已提交
4317
    def __init__(self, block, shape, dtype, **kwargs):
4318 4319 4320 4321 4322
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4323
        if len(shape) == 0:
4324 4325
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4326 4327 4328

        for each in shape:
            if each < 0:
4329 4330 4331
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4332 4333 4334

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4335 4336 4337 4338
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4339 4340
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4341
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4342

W
wanghaoshuang 已提交
4343
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4344

4345 4346
        self.is_distributed = False

F
fengjiayi 已提交
4347 4348 4349
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4350 4351 4352
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4353

F
update  
fengjiayi 已提交
4354 4355 4356 4357 4358 4359 4360 4361
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4362 4363 4364 4365 4366 4367 4368 4369 4370
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4371 4372 4373 4374 4375 4376
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4377
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4378
            for attr_name in additional_attr:
4379 4380
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4381 4382
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4383 4384 4385 4386
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4387

Y
Yu Yang 已提交
4388
# program is a global instance.
Y
Yu Yang 已提交
4389 4390
_main_program_ = Program()
_startup_program_ = Program()
4391

4392

4393
def default_startup_program():
Y
Yu Yang 已提交
4394
    """
Y
yuyang18 已提交
4395 4396
    Get default/global startup program.

4397 4398 4399
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4400 4401 4402
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
4403
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4404

4405
    Returns: current default startup :ref:`api_fluid_Program`
4406

4407
    Returns type: :ref:`api_fluid_Program`
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4423
    """
Y
Yu Yang 已提交
4424
    return _startup_program_
4425

4426

4427
def default_main_program():
Y
Yu Yang 已提交
4428
    """
4429 4430 4431 4432 4433
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4434

4435 4436
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4437
    :code:`default_main_program` when the program is not specified.
4438

4439 4440
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4441
    Returns:
4442
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4443 4444 4445 4446 4447

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4448

4449
            # Sample Network:
4450 4451
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4471
            #print the number of blocks in the program, 1 in this case
4472
            print(fluid.default_main_program().num_blocks)
4473 4474

            #print the description of variable 'image'
4475
            print(fluid.default_main_program().blocks[0].var('image'))
4476

Y
Yu Yang 已提交
4477
    """
Y
Yu Yang 已提交
4478
    return _main_program_
Y
Yu Yang 已提交
4479 4480 4481 4482 4483


def switch_main_program(program):
    """
    Switch the main program to a new program.
4484

Y
Yu Yang 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4499
    Switch the startup program to a new program
Y
Yu Yang 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4512
@signature_safe_contextmanager
Y
Yu Yang 已提交
4513 4514
def program_guard(main_program, startup_program=None):
    """
4515 4516
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4517
    variables to the new main programs.
4518

4519 4520 4521 4522 4523 4524 4525
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4526
    Examples:
4527 4528 4529
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4530

4531 4532 4533
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
4534
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4535
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4536 4537 4538

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4539

Y
Yu Yang 已提交
4540
    Examples:
4541
       .. code-block:: python
Y
yuyang18 已提交
4542

4543 4544 4545 4546 4547
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
4548 4549
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4562 4563


W
Wu Yi 已提交
4564
def _get_var(name, program=None):
X
xuwei06 已提交
4565
    """
Y
yuyang18 已提交
4566
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4567

X
xuwei06 已提交
4568 4569 4570
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4571
        If None, default_global_program() will be used.
X
xuwei06 已提交
4572 4573 4574 4575 4576 4577 4578

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4579
    assert isinstance(program, Program)
X
xuwei06 已提交
4580 4581

    return program.global_block().var(name)
4582 4583


S
rename  
sneaxiy 已提交
4584
@signature_safe_contextmanager
L
lujun 已提交
4585 4586 4587 4588
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4589

4590
    yield
P
Paddle CI 已提交
4591

L
lujun 已提交
4592
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4593 4594


S
rename  
sneaxiy 已提交
4595
@signature_safe_contextmanager
L
lujun 已提交
4596 4597 4598 4599
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4600

4601
    yield
M
minqiyang 已提交
4602

L
lujun 已提交
4603
    _dygraph_current_expected_place_ = tmp_place
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()