math.py 80.1 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
J
joejiong 已提交
36
from ..fluid.layers import tan    #DEFINE_ALIAS
37 38
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
39 40 41 42 43 44 45
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
46 47 48 49
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
50 51 52 53
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
54 55 56 57 58 59 60
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
61 62
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
63

64
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
65
from ..fluid import layers
66

67

68
__all__ = [
69 70
        'abs',
        'acos',
S
syyxsxx 已提交
71 72
        'all',
        'any',
73 74 75 76
        'asin',
        'atan',
        'ceil',
        'cos',
77
        'cosh',
78 79 80
        'cumsum',
        'exp',
        'floor',
81
        'increment',
82
        'log',
J
joejiong 已提交
83
        'log2',
J
joejiong 已提交
84
        'log10',
85
        'logsumexp',
86
        'mul',
87
        'multiplex',
88
        'pow',
89
        'prod',
90 91 92 93 94 95
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
96
        'sinh',
97 98 99 100 101
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
102
        'add_n',
103
        'max',
104
        'maximum',
105
        'min',
106
        'minimum',
107
        'mm',
108 109 110 111 112
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
113
        'multiply',
114
        'add',
115
        'subtract',
116 117
        'atan',
        'logsumexp',
118
        'inverse',
119 120 121
        'log1p',
        'erf',
        'addmm',
Y
Yang Zhang 已提交
122
        'clip',
L
Li Fuchen 已提交
123
        'trace',
J
Jack Zhou 已提交
124 125 126
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
127
        'isnan',
128 129
        'broadcast_shape',
        'conj'
130 131 132
]
# yapf: enable.

133 134 135 136 137 138 139 140 141 142 143 144 145
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

146
def pow(x, y, name=None):
147
    """
148
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
149

150 151
    .. math::
        out = x^{y} 
152

153 154
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
155 156


157 158 159 160 161
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
162
    Returns:
163
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
164 165 166

    Examples:

167
        ..  code-block:: python
168 169 170

            import paddle

171
            # example 1: y is a float
172
            x = paddle.to_tensor([1, 2, 3])
173 174
            y = 2
            res = paddle.pow(x, y)
J
joejiong 已提交
175
            print(res) # [1 4 9]
176 177
            
            # example 2: y is a Tensor
C
Chen Long 已提交
178 179
            y = paddle.full(shape=[1], fill_value=2, dtype='int64')
        
180
            res = paddle.pow(x, y)
J
joejiong 已提交
181
            print(res) # [1 4 9]
182 183

    """
184
    # in dynamic graph mode
W
WuHaobo 已提交
185
    if in_dygraph_mode():
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
206
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
207 208 209
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
210 211 212



213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

233 234
    out = helper.kwargs.get('out', None)

235 236 237 238 239 240 241 242 243 244 245 246
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
247 248 249 250 251 252

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
253 254 255 256 257 258 259 260 261 262 263

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
264
def add(x, y, name=None):
265
    """
266
    Examples:
267 268 269 270

    ..  code-block:: python

        import paddle
271 272
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
273
        z = paddle.add(x, y)
274
        print(z)  # [3., 8., 6. ]
275 276 277 278 279 280

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
281
            x, y, axis=axis, op_name=op_type)
282 283 284 285

    return _elementwise_op(LayerHelper(op_type, **locals()))


286 287
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
288
    Substract two tensors element-wise. The equation is:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


347
def divide(x, y, name=None):
348
    """
349
    Divide two tensors element-wise. The equation is:
350

351 352
    .. math::
        out = x / y
353

354 355
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
356

357 358 359 360
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
361

362
    Returns:
363
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
364

365
    Examples:
366

367
        ..  code-block:: python
368

369
            import paddle
370

371 372
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
373
            z = paddle.divide(x, y)
374
            print(z)  # [2., 0.6, 2.]
375

376 377 378 379 380 381 382
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
383

384
    return _elementwise_op(LayerHelper(op_type, **locals()))
385 386


387 388 389
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
390

391 392
    .. math::
        out = x // y
393

394 395
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
396

397 398 399 400
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
401

402 403
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
404

405
    Examples:
406

407
        ..  code-block:: python
408

409
            import paddle
410

411 412
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
413
            z = paddle.floor_divide(x, y)
414
            print(z)  # [2, 0, 2, 2]
415

416 417 418 419 420 421
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
422

423
    return _elementwise_op(LayerHelper(op_type, **locals()))
424 425


426
def remainder(x, y, name=None):
427
    r"""
428 429 430
    Mod two tensors element-wise. The equation is:

    .. math::
431

432 433 434
        out = x \% y

    **Note**:
435
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
436 437

    Args:
W
WangXi 已提交
438 439
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
440 441 442
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
443
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
444 445 446 447 448 449 450

    Examples:

        ..  code-block:: python

            import paddle

451 452
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
453
            z = paddle.remainder(x, y)
W
WangXi 已提交
454
            print(z)  # [0, 3, 2, 1]
455 456 457

    """
    op_type = 'elementwise_mod'
458 459 460
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
461
            x, y, axis=axis, op_name=op_type)
462 463 464 465

    return _elementwise_op(LayerHelper(op_type, **locals()))


466 467 468 469
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


470
def multiply(x, y, name=None):
471
    """
472
    multiply two tensors element-wise. The equation is:
473

474 475
    .. math::
        out = x * y
476

477 478
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
479

480 481 482 483
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
484

485
    Returns:
486
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
487

488 489 490 491 492 493
    Examples:

        ..  code-block:: python

            import paddle

494 495
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
496
            res = paddle.multiply(x, y)
497
            print(res) # [[5, 12], [21, 32]]
498

499
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
500 501 502
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
503 504 505 506

    """
    op_type = 'elementwise_mul'
    act = None
507
    axis = -1
508

509 510 511 512
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

513 514 515 516 517
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

518 519
    return _elementwise_op(LayerHelper(op_type, **locals()))

520
def maximum(x, y, name=None):
521
    """
W
Wei Shengyu 已提交
522
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
523

524 525
    .. math::
        out = max(x, y)
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
570 571
    """
    op_type = 'elementwise_max'
572
    axis = -1
573 574 575 576 577 578
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

579
def minimum(x, y, name=None):
580
    """
W
Wei Shengyu 已提交
581
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
582

583 584
    .. math::
        out = min(x, y)
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
629 630
    """
    op_type = 'elementwise_min'
631
    axis = -1
632 633 634 635 636
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
637

638 639
for func in [
        add,
640
        multiply
641
]:
642
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
643 644
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
645 646 647 648 649 650 651
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
652 653
        op_proto,
        additional_args_lines=additional_args_lines,
654
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
655
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
656
        }) + """\n""" + str(func.__doc__)
657

Y
Yang Zhang 已提交
658

659
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
660 661 662 663
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
664 665 666
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
667
            Tensor with a single element, otherwise must be in the
668 669 670 671 672 673 674
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
675
            value is False.
676
        name (str, optional): The default value is None. Normally there is no need for
677 678 679
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
680 681
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
682 683

    Raises:
684 685
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
686
        TypeError: The type of :attr:`axis` must be int, list or tuple.
687

688 689 690 691
    Examples:
        .. code-block:: python

            import paddle
692

693
            # x is a Tensor with following elements:
694 695 696
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
697 698
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
699
            out1 = paddle.sum(x)  # [3.5]
700 701 702
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
703

704
            # y is a Tensor with shape [2, 2, 2] and elements as below:
705 706 707
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
708 709
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
710 711
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
712
    """
713 714 715 716 717 718 719 720 721 722 723
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

724
    attrs = {
725 726 727
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
728 729 730 731
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
732 733
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
734
                attrs.update({
735
                    'in_dtype': x.dtype,
736 737 738 739 740
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
741
        axis = axis if axis != None and axis != [] else [0]
742
        if dtype_flag:
743 744 745
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
746 747
                                       convert_np_dtype_to_dtype_(dtype))
        else:
748 749
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
750
    check_variable_and_dtype(
751
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
752 753 754 755 756 757 758 759 760 761 762

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

763 764
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

765 766 767 768 769
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
770
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
771 772
    helper.append_op(
        type='reduce_sum',
773
        inputs={'X': x},
774 775 776
        outputs={'Out': out},
        attrs=attrs)
    return out
777

778

779
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
780
def add_n(inputs, name=None):
781
    """
S
Steffy-zxf 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
817 818

    Args:
S
Steffy-zxf 已提交
819 820
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
821 822 823 824
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
825
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
826 827 828 829 830 831

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
832 833 834 835 836
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
837
    """
S
Steffy-zxf 已提交
838 839 840 841
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
842

S
Steffy-zxf 已提交
843 844
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
845 846 847 848
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
849
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
850 851
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
852
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
853 854


855 856 857 858 859 860 861 862 863 864 865
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
866
def mm(input, mat2, name=None):
867
    """
S
swtkiwi 已提交
868

869 870 871 872 873 874 875 876 877 878
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

879 880
    This op does not support broadcasting. See paddle.matmul.

881
    Args:
882
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
883
        mat2 (Tensor): The input tensor which is a Tensor.
884 885 886 887
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
888
        Tensor: The product Tensor.
889 890 891 892 893

    Examples:
        .. code-block:: python

            import paddle
894 895 896 897 898 899 900 901
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
902

903 904
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
905
        out = _varbase_creator(dtype=input.dtype)
906 907
        core.ops.matmul(input, mat2, out)
        return out
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
945
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
946 947 948 949
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
950

951

Y
yaoxuefeng 已提交
952
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
953 954 955 956 957 958 959 960 961 962 963 964 965
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
966 967 968
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
969
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
970
        alpha (float): Coefficient of $x*y$.
971 972 973
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
974
        Tensor: The output Tensor of addmm op.
975 976 977

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
978
            
979 980
            import paddle

Y
yaoxuefeng 已提交
981 982 983
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
984

Y
yaoxuefeng 已提交
985
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
986

N
Noel 已提交
987
            print(out)
988 989 990
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1011 1012 1013 1014
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1015 1016 1017 1018
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1019
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1020 1021 1022 1023 1024 1025 1026
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1027 1028


1029
def logsumexp(x, axis=None, keepdim=False, name=None):
1030
    r"""
1031
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1032

1033
    .. math::
1034
       logsumexp(x) = \\log\\sum exp(x)
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1054

1055
    Returns:
1056 1057
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1058

1059
    Examples:
1060

1061
    .. code-block:: python
1062

1063 1064
        import paddle

1065
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1066 1067
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1068 1069

    """
1070 1071 1072 1073 1074 1075 1076
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1077

1078
    if in_dygraph_mode():
1079
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1080

1081 1082 1083
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1084

1085
    helper = LayerHelper('logsumexp', **locals())
1086
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1087 1088 1089 1090
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1091

S
swtkiwi 已提交
1092

1093 1094
def inverse(x, name=None):
    """
1095 1096 1097 1098 1099
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1100
        x (Tensor): The input tensor. The last two
1101 1102 1103 1104 1105 1106 1107 1108
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1109
        Tensor: A Tensor holds the inverse of x. The shape and data type
1110
                        is the same as x.
1111 1112 1113 1114 1115

    Examples:
        .. code-block:: python

            import paddle
1116 1117

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1118 1119
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1120 1121 1122

    """
    if in_dygraph_mode():
1123
        return core.ops.inverse(x)
1124

1125 1126
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1127
                                 ['float32', 'float64'], 'inverse')
1128
        if len(x.shape) < 2:
1129 1130 1131
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1132 1133
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1134
    helper = LayerHelper('inverse', **locals())
1135
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1136
    helper.append_op(
1137
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1138 1139 1140
    return out


1141
def max(x, axis=None, keepdim=False, name=None):
1142
    """
S
swtkiwi 已提交
1143

1144
    Computes the maximum of tensor elements over the given axis.
1145 1146

    Args:
1147
        x(Tensor): A tensor, the data type is float32,
1148
            float64, int32, int64.
1149
        axis(list|int, optional): The axis along which the maximum is computed.
1150
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1151
            `x` and return a Tensor with a single element,
1152 1153 1154
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1155
            output Tensor. The result tensor will have one fewer dimension
1156
            than the `x` unless :attr:`keepdim` is true, default
1157
            value is False.
1158
        name(str, optional): The default value is None.  Normally there is no need for
1159 1160 1161
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1162
        Tensor, results of maximum on the specified axis of input tensor,
1163
        it's data type is the same as `x`.
1164 1165 1166

    Examples:
        .. code-block:: python
1167

1168
            import paddle
1169

N
Noel 已提交
1170
            # data_x is a Tensor with shape [2, 4]
1171
            # the axis is a int element
1172 1173 1174

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1175
            result1 = paddle.max(x)
N
Noel 已提交
1176
            print(result1)
1177 1178
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1179
            print(result2)
1180 1181
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1182
            print(result3)
1183 1184
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1185
            print(result4)
1186 1187 1188
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1189
            # data_y is a Tensor with shape [2, 2, 2]
1190
            # the axis is list 
1191 1192 1193

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1194
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1195
            print(result5)
1196 1197
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1198
            print(result6)
1199
            #[7. 8.]
1200 1201
    """

1202
    if axis is not None and not isinstance(axis, list):
1203 1204 1205 1206 1207 1208 1209 1210
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1211 1212 1213 1214 1215
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1216

1217
    helper = LayerHelper('max', **locals())
1218
    check_variable_and_dtype(
1219
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1220

1221
    out = helper.create_variable_for_type_inference(
1222
            dtype=x.dtype)
1223 1224
    helper.append_op(
        type='reduce_max',
1225
        inputs={'X': x},
1226 1227
        outputs={'Out': out},
        attrs={
1228 1229
            'dim': axis,
            'keep_dim': keepdim,
1230 1231 1232 1233
            'reduce_all': reduce_all
        })
    return out

1234
def min(x, axis=None, keepdim=False, name=None):
1235
    """
S
swtkiwi 已提交
1236

1237
    Computes the minimum of tensor elements over the given axis
1238

1239
    Args:
1240 1241
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1242
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1243
            `x` and return a Tensor with a single element,
1244 1245 1246
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1247
            output Tensor. The result tensor will have one fewer dimension
1248
            than the `x` unless :attr:`keepdim` is true, default
1249
            value is False.
W
WuHaobo 已提交
1250
        name(str, optional): The default value is None.  Normally there is no need for 
1251
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1252

1253
    Returns:
1254
        Tensor, results of minimum on the specified axis of input tensor,
1255
        it's data type is the same as input's Tensor.
1256

1257 1258 1259
    Examples:
        .. code-block:: python

1260
            import paddle
1261

1262
            # x is a tensor with shape [2, 4]
1263
            # the axis is a int element
1264 1265
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1266
            result1 = paddle.min(x)
N
Noel 已提交
1267
            print(result1)
1268 1269
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1270
            print(result2)
1271 1272
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1273
            print(result3)
1274 1275
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1276
            print(result4)
1277 1278 1279
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1280
            # y is a Tensor with shape [2, 2, 2]
1281
            # the axis is list 
1282 1283
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1284
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1285
            print(result5)
1286 1287
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1288
            print(result6)
1289 1290
            #[1. 2.]
    """
1291

1292
    if axis is not None and not isinstance(axis, list):
1293 1294 1295 1296 1297 1298 1299
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1300 1301
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1302
    if in_dygraph_mode():
1303
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1304
                                   'reduce_all', reduce_all)
1305 1306 1307 1308 1309 1310

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1311
            dtype=x.dtype)
1312 1313
    helper.append_op(
        type='reduce_min',
1314
        inputs={'X': x},
1315 1316
        outputs={'Out': out},
        attrs={
1317 1318
            'dim': axis,
            'keep_dim': keepdim,
1319 1320 1321 1322 1323
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1324
def log1p(x, name=None):
1325
    r"""
1326
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1327

1328 1329
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1330

1331
    Args:
S
Steffy-zxf 已提交
1332
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1333 1334 1335
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1336
        Tensor, the natural log of the input Tensor computed element-wise.
1337

1338 1339
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1340

1341
            import paddle
S
Steffy-zxf 已提交
1342 1343 1344 1345

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1346 1347 1348 1349 1350 1351 1352 1353 1354
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1355
    out = helper.create_variable_for_type_inference(dtype)
1356 1357
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1358

J
joejiong 已提交
1359
def log2(x, name=None):
1360
    r"""
J
joejiong 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1407

J
joejiong 已提交
1408 1409

def log10(x, name=None):
1410
    r"""
J
joejiong 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1459
def clip(x, min=None, max=None, name=None):
1460
    """
Y
Yang Zhang 已提交
1461
    This operator clip all elements in input into the range [ min, max ] and return
1462 1463 1464 1465
    a resulting tensor as the following equation:

    .. math::

1466
        Out = MIN(MAX(x, min), max)
1467 1468

    Args:
Y
Yang Zhang 已提交
1469 1470
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1471
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1472
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1473 1474 1475 1476 1477 1478
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1479
        Tensor: A Tensor with the same data type and data shape as input.
1480 1481 1482 1483 1484

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1485

1486
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1487 1488
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1489
            print(out1)
Y
Yang Zhang 已提交
1490 1491
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1492
            print(out2)
Y
Yang Zhang 已提交
1493 1494
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1495 1496
    """

Y
Yang Zhang 已提交
1497 1498
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1499

W
WuHaobo 已提交
1500
    if in_dygraph_mode():
1501 1502 1503 1504
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1505 1506
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1507
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1508

1509
    if min is not None:
Y
Yang Zhang 已提交
1510
        check_type(min, 'min', (float, int, Variable), 'clip')
1511 1512
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1513
                        'clip', '(When the type of min in clip is Variable.)')
1514
    if max is not None:
Y
Yang Zhang 已提交
1515
        check_type(max, 'max', (float, int, Variable), 'clip')
1516 1517
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1518
                        'clip', '(When the type of max in clip is Variable.)')
1519

Y
Yang Zhang 已提交
1520
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1521 1522

    inputs = {'X': x}
Y
Yang Zhang 已提交
1523
    attrs = {'min': fmin, 'max': fmax}
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1537
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1538
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1539
        dtype=helper.input_dtype('x'))
1540 1541 1542 1543
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1544

W
WuHaobo 已提交
1545

1546
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1547
    """
1548
    **trace**
S
swtkiwi 已提交
1549

1550
    This OP computes the sum along diagonals of the input tensor x.
1551 1552

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1553

1554
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1555
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1556
    of the input tensor x.
L
Li Fuchen 已提交
1557

1558
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1559 1560 1561 1562

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1563
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1564

L
Li Fuchen 已提交
1565
    Args:
1566
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1567 1568 1569
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1570 1571 1572
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1573
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1574 1575 1576 1577 1578

    Examples:
        .. code-block:: python

            import paddle
1579

1580 1581 1582
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1583 1584 1585
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1586
    """
1587 1588
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1589 1590

    def __check_input(input, offset, dim1, dim2):
1591
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1592 1593 1594
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1595
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1596
        assert len(input_shape) >= 2,                     \
1597 1598
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1599 1600
                len(input_shape)

1601 1602
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1603

1604 1605 1606
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1607

1608 1609 1610
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1611 1612


1613 1614 1615
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1616

1617 1618 1619
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1620
    if not in_dygraph_mode():
1621
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1622 1623
    helper = LayerHelper('trace', **locals())

1624
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1625 1626 1627

    helper.append_op(
        type='trace',
1628
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1629
        attrs={'offset': offset,
1630 1631
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1632 1633 1634
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1635
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1636
def kron(x, y, name=None):
S
swtkiwi 已提交
1637 1638 1639
    """

${comment}
F
Feiyu Chan 已提交
1640 1641

    Args:
N
Noel 已提交
1642
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1643
            float64, int32 or int64.
N
Noel 已提交
1644
        y (Tensor): the second operand of kron op, data type: float16,
1645
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1646
            with x.
1647 1648
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1649 1650 1651
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1652
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1653 1654 1655

    Examples:
        .. code-block:: python
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1668 1669 1670 1671 1672 1673 1674 1675
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1676
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1677 1678
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1679 1680 1681 1682


def cumsum(x, axis=None, dtype=None, name=None):
    """
1683 1684 1685 1686
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1687 1688

    Args:
1689
        x (Tensor): The input tensor needed to be cumsumed.
1690 1691 1692 1693 1694
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1695
        Tensor, the result of cumsum operator. 
1696 1697 1698 1699 1700

    Examples:
        .. code-block:: python
            
            import paddle
1701 1702 1703
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1743

J
Jack Zhou 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1760

1761
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1762
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1763
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1789
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1790
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1791
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1817
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1818
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1819
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1830 1831 1832 1833 1834
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1835
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1845
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1855
    
G
guofei 已提交
1856 1857 1858 1859 1860 1861
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1862 1863
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1880 1881
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1914
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1931
    r"""
W
WangXi 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1950
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1951
            out = paddle.tanh(x)
N
Noel 已提交
1952
            print(out)
W
WangXi 已提交
1953 1954 1955 1956 1957 1958
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1959
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1960 1961 1962 1963
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2010
            Tensor with a single element, otherwise must be in the
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2033
            # x is a bool Tensor with following elements:
2034 2035
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2036
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2037
            print(x)
S
syyxsxx 已提交
2038
            x = paddle.cast(x, 'bool')
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2053 2054
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2104
            Tensor with a single element, otherwise must be in the
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2127
            # x is a bool Tensor with following elements:
2128 2129
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2130
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2131
            print(x)
S
syyxsxx 已提交
2132
            x = paddle.cast(x, 'bool')
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
S
syyxsxx 已提交
2147 2148
            out4 = paddle.any(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[True], [False]]
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
        return core.ops.conj(x)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out